Cargando…
Site of the Hydroxyl Group Determines the Surface Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives—Langmuir Monolayer Studies Supplemented with Theoretical Calculations
[Image: see text] Cholesterol oxidation products (called oxysterols) are involved in many biological processes, showing both negative (e.g., neurodegenerative) and positive (e.g., antiviral and antimicrobial) effects. The physiological activity of oxysterols is undoubtedly closely related to their s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009745/ https://www.ncbi.nlm.nih.gov/pubmed/36821098 http://dx.doi.org/10.1021/acs.jpcb.2c08629 |
_version_ | 1784906052163076096 |
---|---|
author | Chachaj-Brekiesz, Anna Wnętrzak, Anita Kobierski, Jan Petelska, Aneta D. Dynarowicz-Latka, Patrycja |
author_facet | Chachaj-Brekiesz, Anna Wnętrzak, Anita Kobierski, Jan Petelska, Aneta D. Dynarowicz-Latka, Patrycja |
author_sort | Chachaj-Brekiesz, Anna |
collection | PubMed |
description | [Image: see text] Cholesterol oxidation products (called oxysterols) are involved in many biological processes, showing both negative (e.g., neurodegenerative) and positive (e.g., antiviral and antimicrobial) effects. The physiological activity of oxysterols is undoubtedly closely related to their structure (i.e., the type and location of the additional polar group in the cholesterol skeleton). In this paper, we focus on determining how a seemingly minor structural change (introduction of a hydroxyl moiety at C(24), C(25), or C(27) in the isooctyl chain of cholesterol) affects the organization of the resulting molecules at the phase boundary. In our research, we supplemented the classic Langmuir monolayer technique, based on the surface pressure and electric surface potential isotherms, with microscopic (BAM) and spectroscopic (PM-IRRAS) techniques, as well as theoretical calculations (DFT and MD). This allowed us to show that 24-OH behaves more like cholesterol and forms stable, rigid monolayers. On the other hand, 27-OH, similar to 25-OH, undergoes the phase transition from monolayer to bilayer structures. Theoretical calculations enabled us to conclude that the formation of bilayers from 27-OH or 25-OH is possible due to the hydrogen bonding between adjacent oxysterol molecules. This observation may help to understand the factors responsible for the unique biological activity (including antiviral and antimicrobial) of 27-OH and 25-OH compared to other oxysterols. |
format | Online Article Text |
id | pubmed-10009745 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100097452023-03-14 Site of the Hydroxyl Group Determines the Surface Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives—Langmuir Monolayer Studies Supplemented with Theoretical Calculations Chachaj-Brekiesz, Anna Wnętrzak, Anita Kobierski, Jan Petelska, Aneta D. Dynarowicz-Latka, Patrycja J Phys Chem B [Image: see text] Cholesterol oxidation products (called oxysterols) are involved in many biological processes, showing both negative (e.g., neurodegenerative) and positive (e.g., antiviral and antimicrobial) effects. The physiological activity of oxysterols is undoubtedly closely related to their structure (i.e., the type and location of the additional polar group in the cholesterol skeleton). In this paper, we focus on determining how a seemingly minor structural change (introduction of a hydroxyl moiety at C(24), C(25), or C(27) in the isooctyl chain of cholesterol) affects the organization of the resulting molecules at the phase boundary. In our research, we supplemented the classic Langmuir monolayer technique, based on the surface pressure and electric surface potential isotherms, with microscopic (BAM) and spectroscopic (PM-IRRAS) techniques, as well as theoretical calculations (DFT and MD). This allowed us to show that 24-OH behaves more like cholesterol and forms stable, rigid monolayers. On the other hand, 27-OH, similar to 25-OH, undergoes the phase transition from monolayer to bilayer structures. Theoretical calculations enabled us to conclude that the formation of bilayers from 27-OH or 25-OH is possible due to the hydrogen bonding between adjacent oxysterol molecules. This observation may help to understand the factors responsible for the unique biological activity (including antiviral and antimicrobial) of 27-OH and 25-OH compared to other oxysterols. American Chemical Society 2023-02-23 /pmc/articles/PMC10009745/ /pubmed/36821098 http://dx.doi.org/10.1021/acs.jpcb.2c08629 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Chachaj-Brekiesz, Anna Wnętrzak, Anita Kobierski, Jan Petelska, Aneta D. Dynarowicz-Latka, Patrycja Site of the Hydroxyl Group Determines the Surface Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives—Langmuir Monolayer Studies Supplemented with Theoretical Calculations |
title | Site of the Hydroxyl
Group Determines the Surface
Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives—Langmuir
Monolayer Studies Supplemented with Theoretical Calculations |
title_full | Site of the Hydroxyl
Group Determines the Surface
Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives—Langmuir
Monolayer Studies Supplemented with Theoretical Calculations |
title_fullStr | Site of the Hydroxyl
Group Determines the Surface
Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives—Langmuir
Monolayer Studies Supplemented with Theoretical Calculations |
title_full_unstemmed | Site of the Hydroxyl
Group Determines the Surface
Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives—Langmuir
Monolayer Studies Supplemented with Theoretical Calculations |
title_short | Site of the Hydroxyl
Group Determines the Surface
Behavior of Bipolar Chain-Oxidized Cholesterol Derivatives—Langmuir
Monolayer Studies Supplemented with Theoretical Calculations |
title_sort | site of the hydroxyl
group determines the surface
behavior of bipolar chain-oxidized cholesterol derivatives—langmuir
monolayer studies supplemented with theoretical calculations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009745/ https://www.ncbi.nlm.nih.gov/pubmed/36821098 http://dx.doi.org/10.1021/acs.jpcb.2c08629 |
work_keys_str_mv | AT chachajbrekieszanna siteofthehydroxylgroupdeterminesthesurfacebehaviorofbipolarchainoxidizedcholesterolderivativeslangmuirmonolayerstudiessupplementedwiththeoreticalcalculations AT wnetrzakanita siteofthehydroxylgroupdeterminesthesurfacebehaviorofbipolarchainoxidizedcholesterolderivativeslangmuirmonolayerstudiessupplementedwiththeoreticalcalculations AT kobierskijan siteofthehydroxylgroupdeterminesthesurfacebehaviorofbipolarchainoxidizedcholesterolderivativeslangmuirmonolayerstudiessupplementedwiththeoreticalcalculations AT petelskaanetad siteofthehydroxylgroupdeterminesthesurfacebehaviorofbipolarchainoxidizedcholesterolderivativeslangmuirmonolayerstudiessupplementedwiththeoreticalcalculations AT dynarowiczlatkapatrycja siteofthehydroxylgroupdeterminesthesurfacebehaviorofbipolarchainoxidizedcholesterolderivativeslangmuirmonolayerstudiessupplementedwiththeoreticalcalculations |