Cargando…
AA-forecast: anomaly-aware forecast for extreme events
Time series models often are impacted by extreme events and anomalies, both prevalent in real-world datasets. Such models require careful probabilistic forecasts, which is vital in risk management for extreme events such as hurricanes and pandemics. However, it’s challenging to automatically detect...
Autores principales: | Farhangi, Ashkan, Bian, Jiang, Huang, Arthur, Xiong, Haoyi, Wang, Jun, Guo, Zhishan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009855/ https://www.ncbi.nlm.nih.gov/pubmed/37034121 http://dx.doi.org/10.1007/s10618-023-00919-7 |
Ejemplares similares
-
Forecasting extreme stratospheric polar vortex events
por: Gray, L. J., et al.
Publicado: (2020) -
FedBranched: Leveraging Federated Learning for Anomaly-Aware Load Forecasting in Energy Networks
por: Manzoor, Habib Ullah, et al.
Publicado: (2023) -
Extreme weather forecasting : state of the science, uncertainty and impacts /
Publicado: (2023) -
Extreme Financial Forecasting with In-memory Analytics
por: FIORIO, Gilles
Publicado: (2014) -
Bayesian Forecasting of Extreme Values in an Exchangeable Sequence
por: Hill, Bruce M.
Publicado: (1994)