Cargando…

Lung Nodule Detection via Optimized Convolutional Neural Network: Impact of Improved Moth Flame Algorithm

Lung cancer is a high-risk disease that affects people all over the world, and lung nodules are the most common sign of early lung cancer. Since early identification of lung cancer can considerably improve a lung scanner patient's chances of survival, an accurate and efficient nodule detection...

Descripción completa

Detalles Bibliográficos
Autores principales: Sebastian, Anuja Eliza, Dua, Disha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009866/
https://www.ncbi.nlm.nih.gov/pubmed/36936054
http://dx.doi.org/10.1007/s11220-022-00406-1
Descripción
Sumario:Lung cancer is a high-risk disease that affects people all over the world, and lung nodules are the most common sign of early lung cancer. Since early identification of lung cancer can considerably improve a lung scanner patient's chances of survival, an accurate and efficient nodule detection system can be essential. Automatic lung nodule recognition decreases radiologists' effort, as well as the risk of misdiagnosis and missed diagnoses. Hence, this article developed a new lung nodule detection model with four stages like “Image pre-processing, segmentation, feature extraction and classification”. In this processes, pre-processing is the first step, in which the input image is subjected to a series of operations. Then, the "Otsu Thresholding model" is used to segment the pre-processed pictures. Then in the third stage, the LBP features are retrieved that is then classified via optimized Convolutional Neural Network (CNN). In this, the activation function and convolutional layer count of CNN is optimally tuned via a proposed algorithm known as Improved Moth Flame Optimization (IMFO). At the end, the betterment of the scheme is validated by carrying out analysis in terms of certain measures. Especially, the accuracy of the proposed work is 6.85%, 2.91%, 1.75%, 0.73%, 1.83%, as well as 4.05% superior to the extant SVM, KNN, CNN, MFO, WTEEB as well as GWO + FRVM methods respectively.