Cargando…
Lung Nodule Detection via Optimized Convolutional Neural Network: Impact of Improved Moth Flame Algorithm
Lung cancer is a high-risk disease that affects people all over the world, and lung nodules are the most common sign of early lung cancer. Since early identification of lung cancer can considerably improve a lung scanner patient's chances of survival, an accurate and efficient nodule detection...
Autores principales: | Sebastian, Anuja Eliza, Dua, Disha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009866/ https://www.ncbi.nlm.nih.gov/pubmed/36936054 http://dx.doi.org/10.1007/s11220-022-00406-1 |
Ejemplares similares
-
Data Clustering Using Moth-Flame Optimization Algorithm
por: Singh, Tribhuvan, et al.
Publicado: (2021) -
A new technique for influence maximization on social networks using a moth-flame optimization algorithm
por: Cui, Qi, et al.
Publicado: (2023) -
Invocations ; The moth and the flame
por: Jarrett, Keith
Publicado: (1987) -
Lung Cancer Nodules Detection via an Adaptive Boosting Algorithm Based on Self-Normalized Multiview Convolutional Neural Network
por: Khan, Adeel, et al.
Publicado: (2022) -
Moth Flame Optimization: Theory, Modifications, Hybridizations, and Applications
por: Sahoo, Saroj Kumar, et al.
Publicado: (2022)