Cargando…
Ethanol exposure alters Alzheimer’s-related pathology, behavior, and metabolism in APP/PS1 mice
Epidemiological studies identified alcohol use disorder (AUD) as a risk factor for Alzheimer’s disease (AD), yet there is conflicting evidence on how alcohol use promotes AD pathology. In this study, a 10-week moderate two-bottle choice drinking paradigm was used to identify how chronic ethanol expo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010148/ https://www.ncbi.nlm.nih.gov/pubmed/36535550 http://dx.doi.org/10.1016/j.nbd.2022.105967 |
_version_ | 1784906130916376576 |
---|---|
author | Day, Stephen M. Gironda, Stephen C. Clarke, Caitlin W. Snipes, J. Andy Nicol, Noelle I. Kamran, Hana Vaughan, Warner Weiner, Jeffrey L. Macauley, Shannon L. |
author_facet | Day, Stephen M. Gironda, Stephen C. Clarke, Caitlin W. Snipes, J. Andy Nicol, Noelle I. Kamran, Hana Vaughan, Warner Weiner, Jeffrey L. Macauley, Shannon L. |
author_sort | Day, Stephen M. |
collection | PubMed |
description | Epidemiological studies identified alcohol use disorder (AUD) as a risk factor for Alzheimer’s disease (AD), yet there is conflicting evidence on how alcohol use promotes AD pathology. In this study, a 10-week moderate two-bottle choice drinking paradigm was used to identify how chronic ethanol exposure alters amyloid-β (Aβ)-related pathology, metabolism, and behavior. Ethanol-exposed APPswe/PSEN1dE9 (APP/PS1) mice showed increased brain atrophy and an increased number of amyloid plaques. Further analysis revealed that ethanol exposure led to a shift in the distribution of plaque size in the cortex and hippocampus. Ethanol-exposed mice developed a greater number of smaller plaques, potentially setting the stage for increased plaque proliferation in later life. Ethanol drinking APP/PS1 mice also exhibited deficits in nest building, a metric of self-care, as well as increased locomotor activity and central zone exploration in an open field test. Ethanol exposure also led to a diurnal shift in feeding behavior which was associated with changes in glucose homeostasis and glucose intolerance. Complementary in vivo microdialysis experiments were used to measure how acute ethanol directly modulates Aβ in the hippocampal interstitial fluid (ISF). Acute ethanol transiently increased hippocampal ISF glucose levels, suggesting that ethanol directly affects cerebral metabolism. Acute ethanol also selectively increased ISF Aβ40 but not ISF Aβ42, levels during withdrawal. Lastly, chronic ethanol drinking increased N-methyl-d-aspartate receptor (NMDAR) and decreased γ-aminobutyric acid type-A receptor (GABA(A)R) mRNA levels, indicating a potential hyperexcitable shift in the brain’s excitatory/inhibitory (E/I) balance. Collectively, these experiments suggest that ethanol may increase Aβ deposition by disrupting metabolism and the brain’s E/I balance. Furthermore, this study provides evidence that a moderate drinking paradigm culminates in an interaction between alcohol use and AD-related phenotypes with a potentiation of AD-related pathology, behavioral dysfunction, and metabolic impairment. |
format | Online Article Text |
id | pubmed-10010148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-100101482023-03-13 Ethanol exposure alters Alzheimer’s-related pathology, behavior, and metabolism in APP/PS1 mice Day, Stephen M. Gironda, Stephen C. Clarke, Caitlin W. Snipes, J. Andy Nicol, Noelle I. Kamran, Hana Vaughan, Warner Weiner, Jeffrey L. Macauley, Shannon L. Neurobiol Dis Article Epidemiological studies identified alcohol use disorder (AUD) as a risk factor for Alzheimer’s disease (AD), yet there is conflicting evidence on how alcohol use promotes AD pathology. In this study, a 10-week moderate two-bottle choice drinking paradigm was used to identify how chronic ethanol exposure alters amyloid-β (Aβ)-related pathology, metabolism, and behavior. Ethanol-exposed APPswe/PSEN1dE9 (APP/PS1) mice showed increased brain atrophy and an increased number of amyloid plaques. Further analysis revealed that ethanol exposure led to a shift in the distribution of plaque size in the cortex and hippocampus. Ethanol-exposed mice developed a greater number of smaller plaques, potentially setting the stage for increased plaque proliferation in later life. Ethanol drinking APP/PS1 mice also exhibited deficits in nest building, a metric of self-care, as well as increased locomotor activity and central zone exploration in an open field test. Ethanol exposure also led to a diurnal shift in feeding behavior which was associated with changes in glucose homeostasis and glucose intolerance. Complementary in vivo microdialysis experiments were used to measure how acute ethanol directly modulates Aβ in the hippocampal interstitial fluid (ISF). Acute ethanol transiently increased hippocampal ISF glucose levels, suggesting that ethanol directly affects cerebral metabolism. Acute ethanol also selectively increased ISF Aβ40 but not ISF Aβ42, levels during withdrawal. Lastly, chronic ethanol drinking increased N-methyl-d-aspartate receptor (NMDAR) and decreased γ-aminobutyric acid type-A receptor (GABA(A)R) mRNA levels, indicating a potential hyperexcitable shift in the brain’s excitatory/inhibitory (E/I) balance. Collectively, these experiments suggest that ethanol may increase Aβ deposition by disrupting metabolism and the brain’s E/I balance. Furthermore, this study provides evidence that a moderate drinking paradigm culminates in an interaction between alcohol use and AD-related phenotypes with a potentiation of AD-related pathology, behavioral dysfunction, and metabolic impairment. 2023-02 2022-12-16 /pmc/articles/PMC10010148/ /pubmed/36535550 http://dx.doi.org/10.1016/j.nbd.2022.105967 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Day, Stephen M. Gironda, Stephen C. Clarke, Caitlin W. Snipes, J. Andy Nicol, Noelle I. Kamran, Hana Vaughan, Warner Weiner, Jeffrey L. Macauley, Shannon L. Ethanol exposure alters Alzheimer’s-related pathology, behavior, and metabolism in APP/PS1 mice |
title | Ethanol exposure alters Alzheimer’s-related pathology, behavior, and metabolism in APP/PS1 mice |
title_full | Ethanol exposure alters Alzheimer’s-related pathology, behavior, and metabolism in APP/PS1 mice |
title_fullStr | Ethanol exposure alters Alzheimer’s-related pathology, behavior, and metabolism in APP/PS1 mice |
title_full_unstemmed | Ethanol exposure alters Alzheimer’s-related pathology, behavior, and metabolism in APP/PS1 mice |
title_short | Ethanol exposure alters Alzheimer’s-related pathology, behavior, and metabolism in APP/PS1 mice |
title_sort | ethanol exposure alters alzheimer’s-related pathology, behavior, and metabolism in app/ps1 mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010148/ https://www.ncbi.nlm.nih.gov/pubmed/36535550 http://dx.doi.org/10.1016/j.nbd.2022.105967 |
work_keys_str_mv | AT daystephenm ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice AT girondastephenc ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice AT clarkecaitlinw ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice AT snipesjandy ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice AT nicolnoellei ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice AT kamranhana ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice AT vaughanwarner ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice AT weinerjeffreyl ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice AT macauleyshannonl ethanolexposurealtersalzheimersrelatedpathologybehaviorandmetabolisminappps1mice |