Cargando…
Benchmarking machine learning robustness in Covid-19 genome sequence classification
The rapid spread of the COVID-19 pandemic has resulted in an unprecedented amount of sequence data of the SARS-CoV-2 genome—millions of sequences and counting. This amount of data, while being orders of magnitude beyond the capacity of traditional approaches to understanding the diversity, dynamics,...
Autores principales: | Ali, Sarwan, Sahoo, Bikram, Zelikovsky, Alexander, Chen, Pin-Yu, Patterson, Murray |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010240/ https://www.ncbi.nlm.nih.gov/pubmed/36914815 http://dx.doi.org/10.1038/s41598-023-31368-3 |
Ejemplares similares
-
Assessing the Resilience of Machine Learning Classification Algorithms on SARS-CoV-2 Genome Sequences Generated with Long-Read Specific Errors
por: Sahoo, Bikram, et al.
Publicado: (2023) -
Efficient analysis of COVID-19 clinical data using machine learning models
por: Ali, Sarwan, et al.
Publicado: (2022) -
A Protein Classification Benchmark collection for machine learning
por: Sonego, Paolo, et al.
Publicado: (2007) -
Exploring the Potential of GANs in Biological Sequence Analysis
por: Murad, Taslim, et al.
Publicado: (2023) -
Genomic benchmarks: a collection of datasets for genomic sequence classification
por: Grešová, Katarína, et al.
Publicado: (2023)