Cargando…
Deep learning models for hepatitis E incidence prediction leveraging meteorological factors
BACKGROUND: Infectious diseases are a major threat to public health, causing serious medical consumption and casualties. Accurate prediction of infectious diseases incidence is of great significance for public health organizations to prevent the spread of diseases. However, only using historical inc...
Autores principales: | Feng, Yi, Cui, Xiya, Lv, Jingjing, Yan, Bingyu, Meng, Xin, Zhang, Li, Guo, Yanhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010535/ https://www.ncbi.nlm.nih.gov/pubmed/36913401 http://dx.doi.org/10.1371/journal.pone.0282928 |
Ejemplares similares
-
Prediction of hepatitis E using machine learning models
por: Guo, Yanhui, et al.
Publicado: (2020) -
Leveraging deep learning to identify calcification and colloid in thyroid nodules
por: Chen, Chen, et al.
Publicado: (2023) -
Leveraging deep contrastive learning for semantic interaction
por: Belcaid, Mahdi, et al.
Publicado: (2022) -
Leveraging Deep Learning for IoT Transceiver Identification
por: Gao, Jiayao, et al.
Publicado: (2023) -
Effects of meteorological factors on the incidence of mumps and models for prediction, China
por: Zha, Wen-ting, et al.
Publicado: (2020)