Cargando…
Correction: Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network
Autores principales: | Cone, Ian, Shouval, Harel Z |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010686/ https://www.ncbi.nlm.nih.gov/pubmed/36912878 http://dx.doi.org/10.7554/eLife.87507 |
Ejemplares similares
-
Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network
por: Cone, Ian, et al.
Publicado: (2021) -
Spike Timing Dependent Plasticity: A Consequence of More Fundamental Learning Rules
por: Shouval, Harel Z., et al.
Publicado: (2010) -
Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis
por: Cone, Ian, et al.
Publicado: (2021) -
Learning to Express Reward Prediction Error-like Dopaminergic Activity Requires Plastic Representations of Time
por: Cone, Ian, et al.
Publicado: (2023) -
Toward reproducible models of sequence learning: replication and analysis of a modular spiking network with reward-based learning
por: Zajzon, Barna, et al.
Publicado: (2023)