Cargando…
Simultaneous quantifying and visualizing moisture, ash and protein distribution in sweet potato [Ipomoea batatas (L.) Lam] by NIR hyperspectral imaging
This study aimed to achieve the rapid evaluation of moisture, ash and protein of sweet potato simultaneously by near-infrared (NIR) hyperspectral imaging (900–1700 nm). Hyperspectral images of 300 samples for each parameter were acquired and the spectra within images were extracted, averaged and pre...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010985/ https://www.ncbi.nlm.nih.gov/pubmed/36926310 http://dx.doi.org/10.1016/j.fochx.2023.100631 |
Sumario: | This study aimed to achieve the rapid evaluation of moisture, ash and protein of sweet potato simultaneously by near-infrared (NIR) hyperspectral imaging (900–1700 nm). Hyperspectral images of 300 samples for each parameter were acquired and the spectra within images were extracted, averaged and preprocessed to relate to the three measured parameters, using partial least squares (PLS) algorithm, respectively, resulting in good performances. Nine, eleven and eleven informative wavelengths were selected to accelerate the prediction of the three parameters, generating a correlation coefficient of prediction (r(P)) of 0.984, 0.905, 0.935 and root mean square error of prediction (RMSE(P)) of 0.907%, 0.138%, 0.0941% for moisture, ash and protein, respectively. By transferring the best optimized PLS models to generate color chemical maps, the distributions and variations of the three parameters were visualized. NIR hyperspectral imaging is promising and can be applied to simultaneously evaluate multiple quality parameters of sweet potato. |
---|