Cargando…

Research on the cross-contamination in the confined conference room with the radiant floor heating system integrated with the down-supply ventilation

The performance of a confined conference room under radiant heat floor combined with down-supply ventilation (RFDS) is investigated. The purpose of the study is to reveal the mechanism of indoor contaminants transmission from infected person and to protect the occupants. The exhaled contaminant disp...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jie, Xu, Liang, Shen, JingHua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010993/
https://www.ncbi.nlm.nih.gov/pubmed/36925522
http://dx.doi.org/10.1016/j.heliyon.2023.e14389
Descripción
Sumario:The performance of a confined conference room under radiant heat floor combined with down-supply ventilation (RFDS) is investigated. The purpose of the study is to reveal the mechanism of indoor contaminants transmission from infected person and to protect the occupants. The exhaled contaminant dispersion was simulated using a CFD model and experimentally validated in an office with the down-supply ventilation (DS). The effects of radiant floor (RF) combined with down-supply ventilation on airflow and contaminant distribution in the room was evaluated with regard to different RF temperatures and inlet velocities. The influence of downdraft from the envelope on the airflow pattern of the room is also discussed. It is proved that the exposure risk of pollutants can be reduced by strengthening the insulation of the envelope. The simulation results showed that the proposed RFDS system could significantly reduce the level of exposure to contaminants in the breathing zone (BZ) of occupants. In this research case, the RFDS reduced the average exposure rates by more than 50% relative to the case with the only down-supply warm air heating. Furthermore, With improved envelope insulation, the probability of infection can be reduced by more than 80% only by avoiding a simultaneous inlet velocity of 0.3 m/s at RF temperatures no less than 27 °C. The results suggested an improved fresh air heating mode for passive ultra-low energy consumption buildings with good thermal insulation and air tightness.