Cargando…
Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases
Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis- and trans-expression quantitative trait l...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011140/ https://www.ncbi.nlm.nih.gov/pubmed/36823318 http://dx.doi.org/10.1038/s41588-023-01300-6 |
_version_ | 1784906322571952128 |
---|---|
author | de Klein, Niek Tsai, Ellen A. Vochteloo, Martijn Baird, Denis Huang, Yunfeng Chen, Chia-Yen van Dam, Sipko Oelen, Roy Deelen, Patrick Bakker, Olivier B. El Garwany, Omar Ouyang, Zhengyu Marshall, Eric E. Zavodszky, Maria I. van Rheenen, Wouter Bakker, Mark K. Veldink, Jan Gaunt, Tom R. Runz, Heiko Franke, Lude Westra, Harm-Jan |
author_facet | de Klein, Niek Tsai, Ellen A. Vochteloo, Martijn Baird, Denis Huang, Yunfeng Chen, Chia-Yen van Dam, Sipko Oelen, Roy Deelen, Patrick Bakker, Olivier B. El Garwany, Omar Ouyang, Zhengyu Marshall, Eric E. Zavodszky, Maria I. van Rheenen, Wouter Bakker, Mark K. Veldink, Jan Gaunt, Tom R. Runz, Heiko Franke, Lude Westra, Harm-Jan |
author_sort | de Klein, Niek |
collection | PubMed |
description | Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis- and trans-expression quantitative trait locus (eQTL) meta-analyses in multiple brain region- and ancestry-specific datasets (n ≤ 2,759). Many of the 16,169 cortex cis-eQTLs were tissue-dependent when compared with blood cis-eQTLs. We inferred brain cell types for 3,549 cis-eQTLs by interaction analysis. We prioritized 186 cis-eQTLs for 31 brain-related traits using Mendelian randomization and co-localization including 40 cis-eQTLs with an inferred cell type, such as a neuron-specific cis-eQTL (CYP24A1) for multiple sclerosis. We further describe 737 trans-eQTLs for 526 unique variants and 108 unique genes. We used brain-specific gene-co-regulation networks to link GWAS loci and prioritize additional genes for five central nervous system diseases. This study represents a valuable resource for post-GWAS research on central nervous system diseases. |
format | Online Article Text |
id | pubmed-10011140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-100111402023-03-15 Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases de Klein, Niek Tsai, Ellen A. Vochteloo, Martijn Baird, Denis Huang, Yunfeng Chen, Chia-Yen van Dam, Sipko Oelen, Roy Deelen, Patrick Bakker, Olivier B. El Garwany, Omar Ouyang, Zhengyu Marshall, Eric E. Zavodszky, Maria I. van Rheenen, Wouter Bakker, Mark K. Veldink, Jan Gaunt, Tom R. Runz, Heiko Franke, Lude Westra, Harm-Jan Nat Genet Article Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis- and trans-expression quantitative trait locus (eQTL) meta-analyses in multiple brain region- and ancestry-specific datasets (n ≤ 2,759). Many of the 16,169 cortex cis-eQTLs were tissue-dependent when compared with blood cis-eQTLs. We inferred brain cell types for 3,549 cis-eQTLs by interaction analysis. We prioritized 186 cis-eQTLs for 31 brain-related traits using Mendelian randomization and co-localization including 40 cis-eQTLs with an inferred cell type, such as a neuron-specific cis-eQTL (CYP24A1) for multiple sclerosis. We further describe 737 trans-eQTLs for 526 unique variants and 108 unique genes. We used brain-specific gene-co-regulation networks to link GWAS loci and prioritize additional genes for five central nervous system diseases. This study represents a valuable resource for post-GWAS research on central nervous system diseases. Nature Publishing Group US 2023-02-23 2023 /pmc/articles/PMC10011140/ /pubmed/36823318 http://dx.doi.org/10.1038/s41588-023-01300-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article de Klein, Niek Tsai, Ellen A. Vochteloo, Martijn Baird, Denis Huang, Yunfeng Chen, Chia-Yen van Dam, Sipko Oelen, Roy Deelen, Patrick Bakker, Olivier B. El Garwany, Omar Ouyang, Zhengyu Marshall, Eric E. Zavodszky, Maria I. van Rheenen, Wouter Bakker, Mark K. Veldink, Jan Gaunt, Tom R. Runz, Heiko Franke, Lude Westra, Harm-Jan Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases |
title | Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases |
title_full | Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases |
title_fullStr | Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases |
title_full_unstemmed | Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases |
title_short | Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases |
title_sort | brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011140/ https://www.ncbi.nlm.nih.gov/pubmed/36823318 http://dx.doi.org/10.1038/s41588-023-01300-6 |
work_keys_str_mv | AT dekleinniek brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT tsaiellena brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT vochteloomartijn brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT bairddenis brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT huangyunfeng brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT chenchiayen brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT vandamsipko brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT oelenroy brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT deelenpatrick brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT bakkerolivierb brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT elgarwanyomar brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT ouyangzhengyu brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT marshallerice brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT zavodszkymariai brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT vanrheenenwouter brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT bakkermarkk brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT veldinkjan brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT gaunttomr brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT runzheiko brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT frankelude brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases AT westraharmjan brainexpressionquantitativetraitlocusandnetworkanalysesrevealdownstreameffectsandputativedriversforbrainrelateddiseases |