Cargando…

Evaluation of tensile properties of spherical shaped SiC inclusions inside recycled HDPE matrix using FEM based representative volume element approach

In the current study, a FEM-based representative volume element (RVE) technique is used to evaluate the elastic modulus of recycled high-density polyethylene (rHDPE) filled spherical-shaped shaped silicon carbide (SiC). In the ANSYS 2019, the material designer (MD) module is used to generate a 3D RV...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahu, Santosh Kumar, Sreekanth, P.S. Rama
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011209/
https://www.ncbi.nlm.nih.gov/pubmed/36925524
http://dx.doi.org/10.1016/j.heliyon.2023.e14034
Descripción
Sumario:In the current study, a FEM-based representative volume element (RVE) technique is used to evaluate the elastic modulus of recycled high-density polyethylene (rHDPE) filled spherical-shaped shaped silicon carbide (SiC). In the ANSYS 2019, the material designer (MD) module is used to generate a 3D RVE of 500 × 500 × 500 μm cuboid, with randomly dispersed spherical SiC particles (i.e., 10, 15, 20, and 30% volume fractions) inside rHDPE. The Young's modulus values extracted from the RVE technique at various volume % are substantially nearer to experimental data than other micromechanical models. The tensile performance of the composite is simulated, and it was noted that the maximum equivalent stress of 4.1133 MPa for rHDPE/30% SiC composite, which is decreased to 13.8, 7.8 and 6.8% for rHDPE/10% SiC, rHDPE/15% SiC and rHDPE/20% SiC composite respectively. The results are astounding for immediate application in the relevant field of interest.