Cargando…
Deep Learning for the Detection of Multiple Fundus Diseases Using Ultra-widefield Images
INTRODUCTION: To design and evaluate a deep learning model based on ultra-widefield images (UWFIs) that can detect several common fundus diseases. METHODS: Based on 4574 UWFIs, a deep learning model was trained and validated that can identify normal fundus and eight common fundus diseases, namely re...
Autores principales: | Sun, Gongpeng, Wang, Xiaoling, Xu, Lizhang, Li, Chang, Wang, Wenyu, Yi, Zuohuizi, Luo, Huijuan, Su, Yu, Zheng, Jian, Li, Zhiqing, Chen, Zhen, Zheng, Hongmei, Chen, Changzheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Healthcare
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011259/ https://www.ncbi.nlm.nih.gov/pubmed/36565376 http://dx.doi.org/10.1007/s40123-022-00627-3 |
Ejemplares similares
-
Association of Subregional Quantitative Ultra-widefield Fluorescence Angiography Characteristics With the Occurrence of Diabetic Macular Edema and Proliferative Diabetic Retinopathy
por: Sun, Gongpeng, et al.
Publicado: (2021) -
Automated Grading of Diabetic Retinopathy with Ultra-Widefield Fluorescein Angiography and Deep Learning
por: Wang, Xiaoling, et al.
Publicado: (2021) -
Intelligent Diagnosis of Multiple Peripheral Retinal Lesions in Ultra-widefield Fundus Images Based on Deep Learning
por: Wang, Tong, et al.
Publicado: (2023) -
Assessment of early diabetic retinopathy severity using ultra-widefield Clarus versus conventional five-field and ultra-widefield Optos fundus imaging
por: Xiao, Yuanyuan, et al.
Publicado: (2023) -
Ultra-widefield color fundus photography combined with high-speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy
por: Li, Jie, et al.
Publicado: (2022)