Cargando…
Spatiotemporal analysis of lake chlorophyll-a with combined in situ and satellite data
We estimated chlorophyll-a (Chl-a) concentration using various combinations of routine sampling, automatic station measurements, and MERIS satellite images. Our study site was the northern part of the large, shallow, mesotrophic Lake Pyhäjärvi located in southwestern Finland. Various combinations of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011318/ https://www.ncbi.nlm.nih.gov/pubmed/36914861 http://dx.doi.org/10.1007/s10661-023-11064-5 |
Sumario: | We estimated chlorophyll-a (Chl-a) concentration using various combinations of routine sampling, automatic station measurements, and MERIS satellite images. Our study site was the northern part of the large, shallow, mesotrophic Lake Pyhäjärvi located in southwestern Finland. Various combinations of measurements were interpolated spatiotemporally using a data fusion system (DFS) based on an ensemble Kalman filter and smoother algorithms. The estimated concentrations together with corresponding 68% confidence intervals are presented as time series at routine sampling and automated stations, as maps and as mean values over the EU Water Framework Directive monitoring period, to evaluate the efficiency of various monitoring methods. The mean Chl-a calculated with DFS in June–September was 6.5–7.5 µg/l, depending on the observations used as input. At the routine monitoring station where grab samples were used, the average uncertainty (standard deviation, SD) decreased from 2.7 to 1.6 µg/l when EO data were also included in the estimation. At the automatic station, located 0.9 km from the routine monitoring site, the SD was 0.7 µg/l. The SD of spatial mean concentration decreased from 6.7 to 2.9 µg/l when satellite observations were included in June–September, in addition to in situ monitoring data. This demonstrates the high value of the information derived from satellite observations. The conclusion is that the confidence of Chl-a monitoring could be increased by deploying spatially extensive measurements in the form of satellite imaging or transects conducted with flow-through sensors installed on a boat and spatiotemporal interpolation of the multisource data. |
---|