Cargando…
Predicting metastasis in gastric cancer patients: machine learning-based approaches
Gastric cancer (GC), with a 5-year survival rate of less than 40%, is known as the fourth principal reason of cancer-related mortality over the world. This study aims to develop predictive models using different machine learning (ML) classifiers based on both demographic and clinical variables to pr...
Autores principales: | Talebi, Atefeh, Celis-Morales, Carlos A., Borumandnia, Nasrin, Abbasi, Somayeh, Pourhoseingholi, Mohamad Amin, Akbari, Abolfazl, Yousefi, Javad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011363/ https://www.ncbi.nlm.nih.gov/pubmed/36914697 http://dx.doi.org/10.1038/s41598-023-31272-w |
Ejemplares similares
-
Author Correction: Predicting metastasis in gastric cancer patients: machine learning-based approaches
por: Talebi, Atefeh, et al.
Publicado: (2023) -
Development of web-based dynamic nomogram to predict survival in patients with gastric cancer: a population-based study
por: Talebi, Atefeh, et al.
Publicado: (2022) -
Nomogram to Predict the Overall Survival of Colorectal Cancer Patients: A Multicenter National Study
por: Borumandnia, Nasrin, et al.
Publicado: (2021) -
Biological and Clinical Relevance of Long Non-Coding RNA PCAT-1 in Cancer, A Systematic Review and Meta-Analysis
por: Talebi, Atefeh, et al.
Publicado: (2019) -
Survival analysis in gastric cancer: a multi-center study among Iranian patients
por: Talebi, Atefeh, et al.
Publicado: (2020)