Cargando…

Bottom marine heatwaves along the continental shelves of North America

Recently, there has been substantial effort to understand the fundamental characteristics of warm ocean temperature extremes—known as marine heatwaves (MHWs). However, MHW research has primarily focused on the surface signature of these events. While surface MHWs (SMHW) can have dramatic impacts on...

Descripción completa

Detalles Bibliográficos
Autores principales: Amaya, Dillon J., Jacox, Michael G., Alexander, Michael A., Scott, James D., Deser, Clara, Capotondi, Antonietta, Phillips, Adam S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011364/
https://www.ncbi.nlm.nih.gov/pubmed/36914643
http://dx.doi.org/10.1038/s41467-023-36567-0
Descripción
Sumario:Recently, there has been substantial effort to understand the fundamental characteristics of warm ocean temperature extremes—known as marine heatwaves (MHWs). However, MHW research has primarily focused on the surface signature of these events. While surface MHWs (SMHW) can have dramatic impacts on marine ecosystems, extreme warming along the seafloor can also have significant biological outcomes. In this study, we use a high-resolution (~8 km) ocean reanalysis to broadly assess bottom marine heatwaves (BMHW) along the continental shelves of North America. We find that BMHW intensity and duration varies strongly with bottom depth, with typical intensities ranging from ~0.5 °C–3 °C. Further, BMHWs can be more intense and persist longer than SMHWs. While BMHWs and SMHWs often co-occur, BMHWs can also exist without a SMHW. Deeper regions in which the mixed layer does not typically reach the seafloor exhibit less synchronicity between BMHWs and SMHWs.