Cargando…

Differentiating malignant and benign eyelid lesions using deep learning

Artificial intelligence as a screening tool for eyelid lesions will be helpful for early diagnosis of eyelid malignancies and proper decision-making. This study aimed to evaluate the performance of a deep learning model in differentiating eyelid lesions using clinical eyelid photographs in compariso...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Min Joung, Yang, Min Kyu, Khwarg, Sang In, Oh, Eun Kyu, Choi, Youn Joo, Kim, Namju, Choung, Hokyung, Seo, Chang Won, Ha, Yun Jong, Cho, Min Ho, Cho, Bum-Joo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011394/
https://www.ncbi.nlm.nih.gov/pubmed/36914694
http://dx.doi.org/10.1038/s41598-023-30699-5
Descripción
Sumario:Artificial intelligence as a screening tool for eyelid lesions will be helpful for early diagnosis of eyelid malignancies and proper decision-making. This study aimed to evaluate the performance of a deep learning model in differentiating eyelid lesions using clinical eyelid photographs in comparison with human ophthalmologists. We included 4954 photographs from 928 patients in this retrospective cross-sectional study. Images were classified into three categories: malignant lesion, benign lesion, and no lesion. Two pre-trained convolutional neural network (CNN) models, DenseNet-161 and EfficientNetV2-M architectures, were fine-tuned to classify images into three or two (malignant versus benign) categories. For a ternary classification, the mean diagnostic accuracies of the CNNs were 82.1% and 83.0% using DenseNet-161 and EfficientNetV2-M, respectively, which were inferior to those of the nine clinicians (87.0–89.5%). For the binary classification, the mean accuracies were 87.5% and 92.5% using DenseNet-161 and EfficientNetV2-M models, which was similar to that of the clinicians (85.8–90.0%). The mean AUC of the two CNN models was 0.908 and 0.950, respectively. Gradient-weighted class activation map successfully highlighted the eyelid tumors on clinical photographs. Deep learning models showed a promising performance in discriminating malignant versus benign eyelid lesions on clinical photographs, reaching the level of human observers.