Cargando…
Exact Gaussian processes for massive datasets via non-stationary sparsity-discovering kernels
A Gaussian Process (GP) is a prominent mathematical framework for stochastic function approximation in science and engineering applications. Its success is largely attributed to the GP’s analytical tractability, robustness, and natural inclusion of uncertainty quantification. Unfortunately, the use...
Autores principales: | Noack, Marcus M., Krishnan, Harinarayan, Risser, Mark D., Reyes, Kristofer G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011418/ https://www.ncbi.nlm.nih.gov/pubmed/36914705 http://dx.doi.org/10.1038/s41598-023-30062-8 |
Ejemplares similares
-
Autonomous materials discovery driven by Gaussian process regression with inhomogeneous measurement noise and anisotropic kernels
por: Noack, Marcus M., et al.
Publicado: (2020) -
Stable non-Gaussian self-similar processes with stationary increments
por: Pipiras, Vladas, et al.
Publicado: (2017) -
Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
por: Ge, Ting, et al.
Publicado: (2022) -
An asymptotic formula for the variance of the number of zeroes of a stationary Gaussian process
por: Assaf, Eran, et al.
Publicado: (2023) -
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Lu, Chi-Ken, et al.
Publicado: (2021)