Cargando…
A medoid-based deviation ratio index to determine the number of clusters in a dataset
Most existing methods of determining the number of groups apply to particular data types or are calculated based on the distance matrix for all object pairs. In this paper, we propose a medoid-based Deviation Ratio Index (DRI) to determine the number of clusters. The DRI is calculated based on the d...
Autores principales: | Kariyam, Abdurakhman, Effendie, Adhitya Ronnie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011427/ https://www.ncbi.nlm.nih.gov/pubmed/36926268 http://dx.doi.org/10.1016/j.mex.2023.102084 |
Ejemplares similares
-
Measuring dynamic dependency using time-varying copulas with extended parameters: Evidence from exchange rates data
por: Ahdika, Atina, et al.
Publicado: (2021) -
‘Unmasking’ masked address data: A medoid geocoding solution
por: Helderop, Edward, et al.
Publicado: (2023) -
Selecting Representative Samples From Complex Biological Datasets Using K-Medoids Clustering
por: Li, Lei, et al.
Publicado: (2022) -
Clustering Deviation Index (CDI): a robust and accurate internal measure for evaluating scRNA-seq data clustering
por: Fang, Jiyuan, et al.
Publicado: (2022) -
Clustering and Characterization of the Lactation Curves of Dairy Cows Using K-Medoids Clustering Algorithm
por: Lee, Mingyung, et al.
Publicado: (2020)