Cargando…
LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition
With the development of signal analysis technology and artificial intelligence, surface electromyography (sEMG) signal gesture recognition is widely used in rehabilitation therapy, human-computer interaction, and other fields. Deep learning has gradually become the mainstream technology for gesture...
Autores principales: | Zhang, Wenli, Zhao, Tingsong, Zhang, Jianyi, Wang, Yufei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011454/ https://www.ncbi.nlm.nih.gov/pubmed/36925629 http://dx.doi.org/10.3389/fnbot.2023.1127338 |
Ejemplares similares
-
A novel concatenate feature fusion RCNN architecture for sEMG-based hand gesture recognition
por: Xu, Pufan, et al.
Publicado: (2022) -
Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals
por: Jiang, Yujian, et al.
Publicado: (2022) -
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023) -
Reducing the Energy Consumption of sEMG-Based Gesture Recognition at the Edge Using Transformers and Dynamic Inference
por: Xie, Chen, et al.
Publicado: (2023) -
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces
por: Leone, Francesca, et al.
Publicado: (2019)