Cargando…
A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes
Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR defi...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011564/ https://www.ncbi.nlm.nih.gov/pubmed/36914848 http://dx.doi.org/10.1038/s41698-023-00366-z |
_version_ | 1784906422602956800 |
---|---|
author | Ritch, Elie J. Herberts, Cameron Warner, Evan W. Ng, Sarah W. S. Kwan, Edmond M. Bacon, Jack V. W. Bernales, Cecily Q. Schönlau, Elena Fonseca, Nicolette M. Giri, Veda N. Maurice-Dror, Corinne Vandekerkhove, Gillian Jones, Steven J. M. Chi, Kim N. Wyatt, Alexander W. |
author_facet | Ritch, Elie J. Herberts, Cameron Warner, Evan W. Ng, Sarah W. S. Kwan, Edmond M. Bacon, Jack V. W. Bernales, Cecily Q. Schönlau, Elena Fonseca, Nicolette M. Giri, Veda N. Maurice-Dror, Corinne Vandekerkhove, Gillian Jones, Steven J. M. Chi, Kim N. Wyatt, Alexander W. |
author_sort | Ritch, Elie J. |
collection | PubMed |
description | Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency. |
format | Online Article Text |
id | pubmed-10011564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-100115642023-03-15 A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes Ritch, Elie J. Herberts, Cameron Warner, Evan W. Ng, Sarah W. S. Kwan, Edmond M. Bacon, Jack V. W. Bernales, Cecily Q. Schönlau, Elena Fonseca, Nicolette M. Giri, Veda N. Maurice-Dror, Corinne Vandekerkhove, Gillian Jones, Steven J. M. Chi, Kim N. Wyatt, Alexander W. NPJ Precis Oncol Article Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency. Nature Publishing Group UK 2023-03-13 /pmc/articles/PMC10011564/ /pubmed/36914848 http://dx.doi.org/10.1038/s41698-023-00366-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ritch, Elie J. Herberts, Cameron Warner, Evan W. Ng, Sarah W. S. Kwan, Edmond M. Bacon, Jack V. W. Bernales, Cecily Q. Schönlau, Elena Fonseca, Nicolette M. Giri, Veda N. Maurice-Dror, Corinne Vandekerkhove, Gillian Jones, Steven J. M. Chi, Kim N. Wyatt, Alexander W. A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes |
title | A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes |
title_full | A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes |
title_fullStr | A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes |
title_full_unstemmed | A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes |
title_short | A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes |
title_sort | generalizable machine learning framework for classifying dna repair defects using ctdna exomes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011564/ https://www.ncbi.nlm.nih.gov/pubmed/36914848 http://dx.doi.org/10.1038/s41698-023-00366-z |
work_keys_str_mv | AT ritcheliej ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT herbertscameron ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT warnerevanw ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT ngsarahws ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT kwanedmondm ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT baconjackvw ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT bernalescecilyq ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT schonlauelena ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT fonsecanicolettem ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT girivedan ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT mauricedrorcorinne ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT vandekerkhovegillian ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT jonesstevenjm ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT chikimn ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT wyattalexanderw ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT ritcheliej generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT herbertscameron generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT warnerevanw generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT ngsarahws generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT kwanedmondm generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT baconjackvw generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT bernalescecilyq generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT schonlauelena generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT fonsecanicolettem generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT girivedan generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT mauricedrorcorinne generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT vandekerkhovegillian generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT jonesstevenjm generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT chikimn generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes AT wyattalexanderw generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes |