Cargando…

A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes

Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR defi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ritch, Elie J., Herberts, Cameron, Warner, Evan W., Ng, Sarah W. S., Kwan, Edmond M., Bacon, Jack V. W., Bernales, Cecily Q., Schönlau, Elena, Fonseca, Nicolette M., Giri, Veda N., Maurice-Dror, Corinne, Vandekerkhove, Gillian, Jones, Steven J. M., Chi, Kim N., Wyatt, Alexander W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011564/
https://www.ncbi.nlm.nih.gov/pubmed/36914848
http://dx.doi.org/10.1038/s41698-023-00366-z
_version_ 1784906422602956800
author Ritch, Elie J.
Herberts, Cameron
Warner, Evan W.
Ng, Sarah W. S.
Kwan, Edmond M.
Bacon, Jack V. W.
Bernales, Cecily Q.
Schönlau, Elena
Fonseca, Nicolette M.
Giri, Veda N.
Maurice-Dror, Corinne
Vandekerkhove, Gillian
Jones, Steven J. M.
Chi, Kim N.
Wyatt, Alexander W.
author_facet Ritch, Elie J.
Herberts, Cameron
Warner, Evan W.
Ng, Sarah W. S.
Kwan, Edmond M.
Bacon, Jack V. W.
Bernales, Cecily Q.
Schönlau, Elena
Fonseca, Nicolette M.
Giri, Veda N.
Maurice-Dror, Corinne
Vandekerkhove, Gillian
Jones, Steven J. M.
Chi, Kim N.
Wyatt, Alexander W.
author_sort Ritch, Elie J.
collection PubMed
description Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency.
format Online
Article
Text
id pubmed-10011564
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100115642023-03-15 A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes Ritch, Elie J. Herberts, Cameron Warner, Evan W. Ng, Sarah W. S. Kwan, Edmond M. Bacon, Jack V. W. Bernales, Cecily Q. Schönlau, Elena Fonseca, Nicolette M. Giri, Veda N. Maurice-Dror, Corinne Vandekerkhove, Gillian Jones, Steven J. M. Chi, Kim N. Wyatt, Alexander W. NPJ Precis Oncol Article Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency. Nature Publishing Group UK 2023-03-13 /pmc/articles/PMC10011564/ /pubmed/36914848 http://dx.doi.org/10.1038/s41698-023-00366-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ritch, Elie J.
Herberts, Cameron
Warner, Evan W.
Ng, Sarah W. S.
Kwan, Edmond M.
Bacon, Jack V. W.
Bernales, Cecily Q.
Schönlau, Elena
Fonseca, Nicolette M.
Giri, Veda N.
Maurice-Dror, Corinne
Vandekerkhove, Gillian
Jones, Steven J. M.
Chi, Kim N.
Wyatt, Alexander W.
A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes
title A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes
title_full A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes
title_fullStr A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes
title_full_unstemmed A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes
title_short A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes
title_sort generalizable machine learning framework for classifying dna repair defects using ctdna exomes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011564/
https://www.ncbi.nlm.nih.gov/pubmed/36914848
http://dx.doi.org/10.1038/s41698-023-00366-z
work_keys_str_mv AT ritcheliej ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT herbertscameron ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT warnerevanw ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT ngsarahws ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT kwanedmondm ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT baconjackvw ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT bernalescecilyq ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT schonlauelena ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT fonsecanicolettem ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT girivedan ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT mauricedrorcorinne ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT vandekerkhovegillian ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT jonesstevenjm ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT chikimn ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT wyattalexanderw ageneralizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT ritcheliej generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT herbertscameron generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT warnerevanw generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT ngsarahws generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT kwanedmondm generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT baconjackvw generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT bernalescecilyq generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT schonlauelena generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT fonsecanicolettem generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT girivedan generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT mauricedrorcorinne generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT vandekerkhovegillian generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT jonesstevenjm generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT chikimn generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes
AT wyattalexanderw generalizablemachinelearningframeworkforclassifyingdnarepairdefectsusingctdnaexomes