Cargando…
The role of additive and diffusive coupling on the dynamics of neural populations
Dynamical models consisting of networks of neural masses commonly assume that the interactions between neural populations are via additive or diffusive coupling. When using the additive coupling, a population’s activity is affected by the sum of the activities of neighbouring populations. In contras...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011566/ https://www.ncbi.nlm.nih.gov/pubmed/36914685 http://dx.doi.org/10.1038/s41598-023-30172-3 |
_version_ | 1784906422846226432 |
---|---|
author | Lopes, Marinho A. Hamandi, Khalid Zhang, Jiaxiang Creaser, Jennifer L. |
author_facet | Lopes, Marinho A. Hamandi, Khalid Zhang, Jiaxiang Creaser, Jennifer L. |
author_sort | Lopes, Marinho A. |
collection | PubMed |
description | Dynamical models consisting of networks of neural masses commonly assume that the interactions between neural populations are via additive or diffusive coupling. When using the additive coupling, a population’s activity is affected by the sum of the activities of neighbouring populations. In contrast, when using the diffusive coupling a neural population is affected by the sum of the differences between its activity and the activity of its neighbours. These two coupling functions have been used interchangeably for similar applications. In this study, we show that the choice of coupling can lead to strikingly different brain network dynamics. We focus on a phenomenological model of seizure transitions that has been used both with additive and diffusive coupling in the literature. We consider small networks with two and three nodes, as well as large random and scale-free networks with 64 nodes. We further assess resting-state functional networks inferred from magnetoencephalography (MEG) from people with juvenile myoclonic epilepsy (JME) and healthy controls. To characterize the seizure dynamics on these networks, we use the escape time, the brain network ictogenicity (BNI) and the node ictogenicity (NI), which are measures of the network’s global and local ability to generate seizure activity. Our main result is that the level of ictogenicity of a network is strongly dependent on the coupling function. Overall, we show that networks with additive coupling have a higher propensity to generate seizures than those with diffusive coupling. We find that people with JME have higher additive BNI than controls, which is the hypothesized BNI deviation between groups, while the diffusive BNI provides opposite results. Moreover, we find that the nodes that are more likely to drive seizures in the additive coupling case are more likely to prevent seizures in the diffusive coupling case, and that these features correlate to the node’s number of connections. Consequently, previous results in the literature involving such models to interrogate functional or structural brain networks could be highly dependent on the choice of coupling. Our results on the MEG functional networks and evidence from the literature suggest that the additive coupling may be a better modeling choice than the diffusive coupling, at least for BNI and NI studies. Thus, we highlight the need to motivate and validate the choice of coupling in future studies involving network models of brain activity. |
format | Online Article Text |
id | pubmed-10011566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-100115662023-03-15 The role of additive and diffusive coupling on the dynamics of neural populations Lopes, Marinho A. Hamandi, Khalid Zhang, Jiaxiang Creaser, Jennifer L. Sci Rep Article Dynamical models consisting of networks of neural masses commonly assume that the interactions between neural populations are via additive or diffusive coupling. When using the additive coupling, a population’s activity is affected by the sum of the activities of neighbouring populations. In contrast, when using the diffusive coupling a neural population is affected by the sum of the differences between its activity and the activity of its neighbours. These two coupling functions have been used interchangeably for similar applications. In this study, we show that the choice of coupling can lead to strikingly different brain network dynamics. We focus on a phenomenological model of seizure transitions that has been used both with additive and diffusive coupling in the literature. We consider small networks with two and three nodes, as well as large random and scale-free networks with 64 nodes. We further assess resting-state functional networks inferred from magnetoencephalography (MEG) from people with juvenile myoclonic epilepsy (JME) and healthy controls. To characterize the seizure dynamics on these networks, we use the escape time, the brain network ictogenicity (BNI) and the node ictogenicity (NI), which are measures of the network’s global and local ability to generate seizure activity. Our main result is that the level of ictogenicity of a network is strongly dependent on the coupling function. Overall, we show that networks with additive coupling have a higher propensity to generate seizures than those with diffusive coupling. We find that people with JME have higher additive BNI than controls, which is the hypothesized BNI deviation between groups, while the diffusive BNI provides opposite results. Moreover, we find that the nodes that are more likely to drive seizures in the additive coupling case are more likely to prevent seizures in the diffusive coupling case, and that these features correlate to the node’s number of connections. Consequently, previous results in the literature involving such models to interrogate functional or structural brain networks could be highly dependent on the choice of coupling. Our results on the MEG functional networks and evidence from the literature suggest that the additive coupling may be a better modeling choice than the diffusive coupling, at least for BNI and NI studies. Thus, we highlight the need to motivate and validate the choice of coupling in future studies involving network models of brain activity. Nature Publishing Group UK 2023-03-13 /pmc/articles/PMC10011566/ /pubmed/36914685 http://dx.doi.org/10.1038/s41598-023-30172-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Lopes, Marinho A. Hamandi, Khalid Zhang, Jiaxiang Creaser, Jennifer L. The role of additive and diffusive coupling on the dynamics of neural populations |
title | The role of additive and diffusive coupling on the dynamics of neural populations |
title_full | The role of additive and diffusive coupling on the dynamics of neural populations |
title_fullStr | The role of additive and diffusive coupling on the dynamics of neural populations |
title_full_unstemmed | The role of additive and diffusive coupling on the dynamics of neural populations |
title_short | The role of additive and diffusive coupling on the dynamics of neural populations |
title_sort | role of additive and diffusive coupling on the dynamics of neural populations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011566/ https://www.ncbi.nlm.nih.gov/pubmed/36914685 http://dx.doi.org/10.1038/s41598-023-30172-3 |
work_keys_str_mv | AT lopesmarinhoa theroleofadditiveanddiffusivecouplingonthedynamicsofneuralpopulations AT hamandikhalid theroleofadditiveanddiffusivecouplingonthedynamicsofneuralpopulations AT zhangjiaxiang theroleofadditiveanddiffusivecouplingonthedynamicsofneuralpopulations AT creaserjenniferl theroleofadditiveanddiffusivecouplingonthedynamicsofneuralpopulations AT lopesmarinhoa roleofadditiveanddiffusivecouplingonthedynamicsofneuralpopulations AT hamandikhalid roleofadditiveanddiffusivecouplingonthedynamicsofneuralpopulations AT zhangjiaxiang roleofadditiveanddiffusivecouplingonthedynamicsofneuralpopulations AT creaserjenniferl roleofadditiveanddiffusivecouplingonthedynamicsofneuralpopulations |