Cargando…

An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment res...

Descripción completa

Detalles Bibliográficos
Autores principales: Weisser, Nina E., Sanches, Mario, Escobar-Cabrera, Eric, O’Toole, Jason, Whalen, Elizabeth, Chan, Peter W. Y., Wickman, Grant, Abraham, Libin, Choi, Kate, Harbourne, Bryant, Samiotakis, Antonios, Rojas, Andrea Hernández, Volkers, Gesa, Wong, Jodi, Atkinson, Claire E., Baardsnes, Jason, Worrall, Liam J., Browman, Duncan, Smith, Emma E., Baichoo, Priya, Cheng, Chi Wing, Guedia, Joy, Kang, Sohyeong, Mukhopadhyay, Abhishek, Newhook, Lisa, Ohrn, Anders, Raghunatha, Prajwal, Zago-Schmitt, Matteo, Schrag, Joseph D., Smith, Joel, Zwierzchowski, Patricia, Scurll, Joshua M., Fung, Vincent, Black, Sonia, Strynadka, Natalie C. J., Gold, Michael R., Presta, Leonard G., Ng, Gordon, Dixit, Surjit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011572/
https://www.ncbi.nlm.nih.gov/pubmed/36914633
http://dx.doi.org/10.1038/s41467-023-37029-3
Descripción
Sumario:Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.