Cargando…
Multi-arm U-Net with dense input and skip connectivity for T2 lesion segmentation in clinical trials of multiple sclerosis
T2 lesion quantification plays a crucial role in monitoring disease progression and evaluating treatment response in multiple sclerosis (MS). We developed a 3D, multi-arm U-Net for T2 lesion segmentation, which was trained on a large, multicenter clinical trial dataset of relapsing MS. We investigat...
Autores principales: | Krishnan, Anitha Priya, Song, Zhuang, Clayton, David, Jia, Xiaoming, de Crespigny, Alex, Carano, Richard A. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011580/ https://www.ncbi.nlm.nih.gov/pubmed/36914715 http://dx.doi.org/10.1038/s41598-023-31207-5 |
Ejemplares similares
-
R2U++: a multiscale recurrent residual U-Net with dense skip connections for medical image segmentation
por: Mubashar, Mehreen, et al.
Publicado: (2022) -
TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation
por: Tran, Song-Toan, et al.
Publicado: (2021) -
Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images
por: Nodirov, Jakhongir, et al.
Publicado: (2022) -
Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation
por: Zhu, Hancan, et al.
Publicado: (2019) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022)