Cargando…
Feasibility and Acceptability of an Internet of Things–Enabled Sedentary Behavior Intervention: Mixed Methods Study
BACKGROUND: Encouraging office workers to break up prolonged sedentary behavior (SB) at work with regular microbreaks can be beneficial yet challenging. The Internet of Things (IoT) offers great promise for delivering more subtle and hence acceptable behavior change interventions in the workplace. W...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012006/ https://www.ncbi.nlm.nih.gov/pubmed/36848183 http://dx.doi.org/10.2196/43502 |
Sumario: | BACKGROUND: Encouraging office workers to break up prolonged sedentary behavior (SB) at work with regular microbreaks can be beneficial yet challenging. The Internet of Things (IoT) offers great promise for delivering more subtle and hence acceptable behavior change interventions in the workplace. We previously developed an IoT-enabled SB intervention, called WorkMyWay, by applying a combination of theory-informed and human-centered design approaches. According to the Medical Research Council’s framework for developing and evaluating complex interventions such as WorkMyWay, process evaluation in the feasibility phase can help establish the viability of novel modes of delivery and identify facilitators and barriers to successful delivery. OBJECTIVE: This study aims to evaluate the feasibility and acceptability of the WorkMyWay intervention and its technological delivery system. METHODS: A mixed methods approach was adopted. A sample of 15 office workers were recruited to use WorkMyWay during work hours for 6 weeks. Questionnaires were administered before and after the intervention period to assess self-report occupational sitting and physical activity (OSPA) and psychosocial variables theoretically aligned with prolonged occupational SB (eg, intention, perceived behavioral control, prospective memory and retrospective memory of breaks, and automaticity of regular break behaviors). Behavioral and interactional data were obtained through the system database to determine adherence, quality of delivery, compliance, and objective OSPA. Semistructured interviews were conducted at the end of the study, and a thematic analysis was performed on interview transcripts. RESULTS: All 15 participants completed the study (attrition=0%) and on average used the system for 25 tracking days (out of a possible 30 days; adherence=83%). Although no significant change was observed in either objective or self-report OSPA, postintervention improvements were significant in the automaticity of regular break behaviors (t(14)=2.606; P=.02), retrospective memory of breaks (t(14)=7.926; P<.001), and prospective memory of breaks (t(14)=–2.661; P=.02). The qualitative analysis identified 6 themes, which lent support to the high acceptability of WorkMyWay, though delivery was compromised by issues concerning Bluetooth connectivity and factors related to user behaviors. Fixing technical issues, tailoring to individual differences, soliciting organizational supports, and harnessing interpersonal influences could facilitate delivery and enhance acceptance. CONCLUSIONS: It is acceptable and feasible to deliver an SB intervention with an IoT system that involves a wearable activity tracking device, an app, and a digitally augmented everyday object (eg, cup). More industrial design and technological development work on WorkMyWay is warranted to improve delivery. Future research should seek to establish the broad acceptability of similar IoT-enabled interventions while expanding the range of digitally augmented objects as the modes of delivery to meet diverse needs. |
---|