Cargando…
Combining distance and anatomical information for deep-learning based dose distribution predictions for nasopharyngeal cancer radiotherapy planning
PURPOSE: Deep-learning effectively predicts dose distributions in knowledge-based radiotherapy planning. Using anatomical information that includes a structure map and computed tomography (CT) data as input has been proven to work well. The minimum distance from each voxel in normal structures to pl...
Autores principales: | Chen, Xinyuan, Zhu, Ji, Yang, Bining, Chen, Deqi, Men, Kuo, Dai, Jianrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012276/ https://www.ncbi.nlm.nih.gov/pubmed/36925918 http://dx.doi.org/10.3389/fonc.2023.1041769 |
Ejemplares similares
-
MRI-Only Radiotherapy Planning for Nasopharyngeal Carcinoma Using Deep Learning
por: Ma, Xiangyu, et al.
Publicado: (2021) -
Evaluation of Automatic Segmentation Model With Dosimetric Metrics for Radiotherapy of Esophageal Cancer
por: Zhu, Ji, et al.
Publicado: (2020) -
Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images
por: Men, Kuo, et al.
Publicado: (2017) -
A more effective CT synthesizer using transformers for cone-beam CT-guided adaptive radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2022) -
A feasibility study on an automated method to generate patient‐specific dose distributions for radiotherapy using deep learning
por: Chen, Xinyuan, et al.
Publicado: (2018)