Cargando…
Automated prediction of COVID-19 severity upon admission by chest X-ray images and clinical metadata aiming at accuracy and explainability
In the past few years COVID-19 posed a huge threat to healthcare systems around the world. One of the first waves of the pandemic hit Northern Italy severely resulting in high casualties and in the near breakdown of primary care. Due to these facts, the Covid CXR Hackathon—Artificial Intelligence fo...
Autores principales: | Olar, Alex, Biricz, András, Bedőházi, Zsolt, Sulyok, Bendegúz, Pollner, Péter, Csabai, István |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012307/ https://www.ncbi.nlm.nih.gov/pubmed/36918593 http://dx.doi.org/10.1038/s41598-023-30505-2 |
Ejemplares similares
-
Physical imaging parameter variation drives domain shift
por: Kilim, Oz, et al.
Publicado: (2022) -
Hierarchy and control of ageing-related methylation networks
por: Palla, Gergely, et al.
Publicado: (2021) -
HunCRC: annotated pathological slides to enhance deep learning applications in colorectal cancer screening
por: Pataki, Bálint Ármin, et al.
Publicado: (2022) -
Detecting and classifying lesions in mammograms with Deep Learning
por: Ribli, Dezső, et al.
Publicado: (2018) -
ALE: automated label extraction from GEO metadata
por: Giles, Cory B., et al.
Publicado: (2017)