Cargando…
Automatic quality assurance of radiotherapy treatment plans using Bayesian networks: A multi-institutional study
PURPOSE: Artificial intelligence applications in radiation oncology have been the focus of study in the last decade. The introduction of automated and intelligent solutions for routine clinical tasks, such as treatment planning and quality assurance, has the potential to increase safety and efficien...
Autores principales: | Kalendralis, Petros, Luk, Samuel M. H., Canters, Richard, Eyssen, Denis, Vaniqui, Ana, Wolfs, Cecile, Murrer, Lars, van Elmpt, Wouter, Kalet, Alan M., Dekker, Andre, van Soest, Johan, Fijten, Rianne, Zegers, Catharina M. L., Bermejo, Inigo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012863/ https://www.ncbi.nlm.nih.gov/pubmed/36925935 http://dx.doi.org/10.3389/fonc.2023.1099994 |
Ejemplares similares
-
Treatment plan quality assessment for radiotherapy of rectal cancer patients using prediction of organ-at-risk dose metrics
por: Vaniqui, Ana, et al.
Publicado: (2020) -
A knowledge graph representation of baseline characteristics for the Dutch proton therapy research registry
por: Sloep, Matthijs, et al.
Publicado: (2021) -
Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy
por: Vaassen, Femke, et al.
Publicado: (2019) -
Independent validation of a dysphagia dose response model for the selection of head and neck cancer patients to proton therapy
por: Kalendralis, Petros, et al.
Publicado: (2022) -
Learning from scanners: Bias reduction and feature correction in radiomics
por: Zhovannik, Ivan, et al.
Publicado: (2019)