Cargando…
On the importance of interpretable machine learning predictions to inform clinical decision making in oncology
Machine learning-based tools are capable of guiding individualized clinical management and decision-making by providing predictions of a patient’s future health state. Through their ability to model complex nonlinear relationships, ML algorithms can often outperform traditional statistical predictio...
Autores principales: | Lu, Sheng-Chieh, Swisher, Christine L., Chung, Caroline, Jaffray, David, Sidey-Gibbons, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013157/ https://www.ncbi.nlm.nih.gov/pubmed/36925929 http://dx.doi.org/10.3389/fonc.2023.1129380 |
Ejemplares similares
-
Ensuring fair, safe, and interpretable artificial intelligence-based prediction tools in a real-world oncological setting
por: George, Renee, et al.
Publicado: (2023) -
ASO Author Reflections: Enhancing Surgical Decision-Making for Breast Reconstruction—Machine Learning-Driven Prediction of Postoperative Quality of Life
por: Xu, Cai, et al.
Publicado: (2023) -
Editorial: Interpretable and explainable machine learning models in oncology
por: Hrinivich, William Thomas, et al.
Publicado: (2023) -
Enhanced Surgical Decision-Making Tools in Breast Cancer: Predicting 2-Year Postoperative Physical, Sexual, and Psychosocial Well-Being following Mastectomy and Breast Reconstruction (INSPiRED 004)
por: Xu, Cai, et al.
Publicado: (2023) -
Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison
por: Pfob, André, et al.
Publicado: (2022)