Cargando…
Small training dataset convolutional neural networks for application-specific super-resolution microscopy
SIGNIFICANCE: Machine learning (ML) models based on deep convolutional neural networks have been used to significantly increase microscopy resolution, speed [signal-to-noise ratio (SNR)], and data interpretation. The bottleneck in developing effective ML systems is often the need to acquire large da...
Autores principales: | Mannam, Varun, Howard, Scott |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013193/ https://www.ncbi.nlm.nih.gov/pubmed/36925620 http://dx.doi.org/10.1117/1.JBO.28.3.036501 |
Ejemplares similares
-
Leukocyte super-resolution via geometry prior and structural consistency
por: Hua, Xia, et al.
Publicado: (2020) -
Analyzing the super-resolution characteristics of focused-spot illumination approaches
por: Yu, Jiun-Yann, et al.
Publicado: (2020) -
Simultaneous multiple-emitter fitting for single molecule super-resolution imaging
por: Huang, Fang, et al.
Publicado: (2011) -
Unsupervised super-resolution reconstruction of hyperspectral histology images for whole-slide imaging
por: Ma, Ling, et al.
Publicado: (2022) -
Fast 3D super-resolution imaging using a digital micromirror device and binary holography
por: Chen, Jialong, et al.
Publicado: (2021)