Cargando…
LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios
In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH f...
Autores principales: | García-Medina, Andrés, Aguayo-Moreno, Ester |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013303/ https://www.ncbi.nlm.nih.gov/pubmed/37362593 http://dx.doi.org/10.1007/s10614-023-10373-8 |
Ejemplares similares
-
Estimating the volatility of cryptocurrencies during bearish markets by employing GARCH models
por: Kyriazis, Νikolaos A., et al.
Publicado: (2019) -
Comparing cryptocurrencies and gold - a system-GARCH-approach
por: Klose, Jens
Publicado: (2022) -
Contagion effect of cryptocurrency on the securities market: a study of Bitcoin volatility using diagonal BEKK and DCC GARCH models
por: Sajeev, Kavya Clanganthuruthil, et al.
Publicado: (2022) -
Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis
por: Özdemir, Onur
Publicado: (2022) -
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model
por: Tang, Jiechen, et al.
Publicado: (2015)