Cargando…
Assessing Barriers to Implementation of Machine Learning and Artificial Intelligence–Based Tools in Critical Care: Web-Based Survey Study
BACKGROUND: Although there is considerable interest in machine learning (ML) and artificial intelligence (AI) in critical care, the implementation of effective algorithms into practice has been limited. OBJECTIVE: We sought to understand physician perspectives of a novel intubation prediction tool....
Autores principales: | Mlodzinski, Eric, Wardi, Gabriel, Viglione, Clare, Nemati, Shamim, Crotty Alexander, Laura, Malhotra, Atul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013679/ https://www.ncbi.nlm.nih.gov/pubmed/36705960 http://dx.doi.org/10.2196/41056 |
Ejemplares similares
-
Artificial intelligence sepsis prediction algorithm learns to say “I don’t know”
por: Shashikumar, Supreeth P., et al.
Publicado: (2021) -
Bringing the Promise of Artificial Intelligence to Critical Care: What the Experience With Sepsis Analytics Can Teach Us
por: Wardi, Gabriel, et al.
Publicado: (2023) -
Representation Learning and Spectral Clustering for the Development and External Validation of Dynamic Sepsis Phenotypes: Observational Cohort Study
por: Boussina, Aaron, et al.
Publicado: (2023) -
Optimizing the Implementation of Clinical Predictive Models to Minimize National Costs: Sepsis Case Study
por: Rogers, Parker, et al.
Publicado: (2023) -
Artificial Intelligence Implementation in Healthcare: A Theory-Based Scoping Review of Barriers and Facilitators
por: Chomutare, Taridzo, et al.
Publicado: (2022)