Cargando…
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
Deep learning has shown potential in domains with large-scale annotated datasets. However, manual annotation is expensive, time-consuming, and tedious. Pixel-level annotations are particularly costly for semantic segmentation in images with dense irregular patterns of object instances, such as in pl...
Autores principales: | Najafian, Keyhan, Ghanbari, Alireza, Sabet Kish, Mahdi, Eramian, Mark, Shirdel, Gholam Hassan, Stavness, Ian, Jin, Lingling, Maleki, Farhad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013790/ https://www.ncbi.nlm.nih.gov/pubmed/36930764 http://dx.doi.org/10.34133/plantphenomics.0025 |
Ejemplares similares
-
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Benchmarking Self-Supervised Contrastive Learning Methods for Image-Based Plant Phenotyping
por: Ogidi, Franklin C., et al.
Publicado: (2023) -
Feature-enhanced adversarial semi-supervised semantic segmentation network for pulmonary embolism annotation
por: Cheng, Ting-Wei, et al.
Publicado: (2023) -
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations
por: Pagano, Lucas, et al.
Publicado: (2023)