Cargando…

Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas

Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection‐driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nano...

Descripción completa

Detalles Bibliográficos
Autores principales: Santandreu, Ana G., Taheri‐Tehrani, Parsa, Feinberg, Benjamin, Torres, Alonso, Blaha, Charles, Shaheen, Rebecca, Moyer, Jarrett, Wright, Nathan, Szot, Gregory L., Fissell, William H., Vartanian, Shant, Posselt, Andrew, Roy, Shuvo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013798/
https://www.ncbi.nlm.nih.gov/pubmed/36925691
http://dx.doi.org/10.1002/btm2.10444
_version_ 1784906854305890304
author Santandreu, Ana G.
Taheri‐Tehrani, Parsa
Feinberg, Benjamin
Torres, Alonso
Blaha, Charles
Shaheen, Rebecca
Moyer, Jarrett
Wright, Nathan
Szot, Gregory L.
Fissell, William H.
Vartanian, Shant
Posselt, Andrew
Roy, Shuvo
author_facet Santandreu, Ana G.
Taheri‐Tehrani, Parsa
Feinberg, Benjamin
Torres, Alonso
Blaha, Charles
Shaheen, Rebecca
Moyer, Jarrett
Wright, Nathan
Szot, Gregory L.
Fissell, William H.
Vartanian, Shant
Posselt, Andrew
Roy, Shuvo
author_sort Santandreu, Ana G.
collection PubMed
description Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection‐driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nanopore membranes (SNM) holds promise to sustain islet function without the need for immunosuppressants. Here, we investigate short‐term functionality of encapsulated human islets in an iBAP prototype. Using the finite element method (FEM), we calculated predicted oxygen profiles within islet scaffolds at normalized perifusion rates of 14–200 nl/min/IEQ. The modeling showed the need for minimum in vitro and in vivo islet perifusion rates of 28 and 100 nl/min/IEQ, respectively to support metabolic insulin production requirements in the iBAP. In vitro glucose‐stimulated insulin secretion (GSIS) profiles revealed a first‐phase response time of <15 min and comparable insulin production rates to standard perifusion systems (~10 pg/min/IEQ) for perifusion rates of 100–200 nl/min/IEQ. An intravenous glucose tolerance test (IVGTT), performed at a perifusion rate of 100–170 nl/min/IEQ in a non‐diabetic pig, demonstrated a clinically relevant C‐peptide production rate (1.0–2.8 pg/min/IEQ) with a response time of <5 min.
format Online
Article
Text
id pubmed-10013798
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-100137982023-03-15 Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas Santandreu, Ana G. Taheri‐Tehrani, Parsa Feinberg, Benjamin Torres, Alonso Blaha, Charles Shaheen, Rebecca Moyer, Jarrett Wright, Nathan Szot, Gregory L. Fissell, William H. Vartanian, Shant Posselt, Andrew Roy, Shuvo Bioeng Transl Med Research Articles Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection‐driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nanopore membranes (SNM) holds promise to sustain islet function without the need for immunosuppressants. Here, we investigate short‐term functionality of encapsulated human islets in an iBAP prototype. Using the finite element method (FEM), we calculated predicted oxygen profiles within islet scaffolds at normalized perifusion rates of 14–200 nl/min/IEQ. The modeling showed the need for minimum in vitro and in vivo islet perifusion rates of 28 and 100 nl/min/IEQ, respectively to support metabolic insulin production requirements in the iBAP. In vitro glucose‐stimulated insulin secretion (GSIS) profiles revealed a first‐phase response time of <15 min and comparable insulin production rates to standard perifusion systems (~10 pg/min/IEQ) for perifusion rates of 100–200 nl/min/IEQ. An intravenous glucose tolerance test (IVGTT), performed at a perifusion rate of 100–170 nl/min/IEQ in a non‐diabetic pig, demonstrated a clinically relevant C‐peptide production rate (1.0–2.8 pg/min/IEQ) with a response time of <5 min. John Wiley & Sons, Inc. 2022-12-14 /pmc/articles/PMC10013798/ /pubmed/36925691 http://dx.doi.org/10.1002/btm2.10444 Text en © 2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Santandreu, Ana G.
Taheri‐Tehrani, Parsa
Feinberg, Benjamin
Torres, Alonso
Blaha, Charles
Shaheen, Rebecca
Moyer, Jarrett
Wright, Nathan
Szot, Gregory L.
Fissell, William H.
Vartanian, Shant
Posselt, Andrew
Roy, Shuvo
Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas
title Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas
title_full Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas
title_fullStr Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas
title_full_unstemmed Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas
title_short Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas
title_sort characterization of human islet function in a convection‐driven intravascular bioartificial pancreas
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013798/
https://www.ncbi.nlm.nih.gov/pubmed/36925691
http://dx.doi.org/10.1002/btm2.10444
work_keys_str_mv AT santandreuanag characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT taheritehraniparsa characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT feinbergbenjamin characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT torresalonso characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT blahacharles characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT shaheenrebecca characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT moyerjarrett characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT wrightnathan characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT szotgregoryl characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT fissellwilliamh characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT vartanianshant characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT posseltandrew characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas
AT royshuvo characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas