Cargando…
Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas
Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection‐driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nano...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013798/ https://www.ncbi.nlm.nih.gov/pubmed/36925691 http://dx.doi.org/10.1002/btm2.10444 |
_version_ | 1784906854305890304 |
---|---|
author | Santandreu, Ana G. Taheri‐Tehrani, Parsa Feinberg, Benjamin Torres, Alonso Blaha, Charles Shaheen, Rebecca Moyer, Jarrett Wright, Nathan Szot, Gregory L. Fissell, William H. Vartanian, Shant Posselt, Andrew Roy, Shuvo |
author_facet | Santandreu, Ana G. Taheri‐Tehrani, Parsa Feinberg, Benjamin Torres, Alonso Blaha, Charles Shaheen, Rebecca Moyer, Jarrett Wright, Nathan Szot, Gregory L. Fissell, William H. Vartanian, Shant Posselt, Andrew Roy, Shuvo |
author_sort | Santandreu, Ana G. |
collection | PubMed |
description | Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection‐driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nanopore membranes (SNM) holds promise to sustain islet function without the need for immunosuppressants. Here, we investigate short‐term functionality of encapsulated human islets in an iBAP prototype. Using the finite element method (FEM), we calculated predicted oxygen profiles within islet scaffolds at normalized perifusion rates of 14–200 nl/min/IEQ. The modeling showed the need for minimum in vitro and in vivo islet perifusion rates of 28 and 100 nl/min/IEQ, respectively to support metabolic insulin production requirements in the iBAP. In vitro glucose‐stimulated insulin secretion (GSIS) profiles revealed a first‐phase response time of <15 min and comparable insulin production rates to standard perifusion systems (~10 pg/min/IEQ) for perifusion rates of 100–200 nl/min/IEQ. An intravenous glucose tolerance test (IVGTT), performed at a perifusion rate of 100–170 nl/min/IEQ in a non‐diabetic pig, demonstrated a clinically relevant C‐peptide production rate (1.0–2.8 pg/min/IEQ) with a response time of <5 min. |
format | Online Article Text |
id | pubmed-10013798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100137982023-03-15 Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas Santandreu, Ana G. Taheri‐Tehrani, Parsa Feinberg, Benjamin Torres, Alonso Blaha, Charles Shaheen, Rebecca Moyer, Jarrett Wright, Nathan Szot, Gregory L. Fissell, William H. Vartanian, Shant Posselt, Andrew Roy, Shuvo Bioeng Transl Med Research Articles Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection‐driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nanopore membranes (SNM) holds promise to sustain islet function without the need for immunosuppressants. Here, we investigate short‐term functionality of encapsulated human islets in an iBAP prototype. Using the finite element method (FEM), we calculated predicted oxygen profiles within islet scaffolds at normalized perifusion rates of 14–200 nl/min/IEQ. The modeling showed the need for minimum in vitro and in vivo islet perifusion rates of 28 and 100 nl/min/IEQ, respectively to support metabolic insulin production requirements in the iBAP. In vitro glucose‐stimulated insulin secretion (GSIS) profiles revealed a first‐phase response time of <15 min and comparable insulin production rates to standard perifusion systems (~10 pg/min/IEQ) for perifusion rates of 100–200 nl/min/IEQ. An intravenous glucose tolerance test (IVGTT), performed at a perifusion rate of 100–170 nl/min/IEQ in a non‐diabetic pig, demonstrated a clinically relevant C‐peptide production rate (1.0–2.8 pg/min/IEQ) with a response time of <5 min. John Wiley & Sons, Inc. 2022-12-14 /pmc/articles/PMC10013798/ /pubmed/36925691 http://dx.doi.org/10.1002/btm2.10444 Text en © 2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Santandreu, Ana G. Taheri‐Tehrani, Parsa Feinberg, Benjamin Torres, Alonso Blaha, Charles Shaheen, Rebecca Moyer, Jarrett Wright, Nathan Szot, Gregory L. Fissell, William H. Vartanian, Shant Posselt, Andrew Roy, Shuvo Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas |
title | Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas |
title_full | Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas |
title_fullStr | Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas |
title_full_unstemmed | Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas |
title_short | Characterization of human islet function in a convection‐driven intravascular bioartificial pancreas |
title_sort | characterization of human islet function in a convection‐driven intravascular bioartificial pancreas |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013798/ https://www.ncbi.nlm.nih.gov/pubmed/36925691 http://dx.doi.org/10.1002/btm2.10444 |
work_keys_str_mv | AT santandreuanag characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT taheritehraniparsa characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT feinbergbenjamin characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT torresalonso characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT blahacharles characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT shaheenrebecca characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT moyerjarrett characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT wrightnathan characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT szotgregoryl characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT fissellwilliamh characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT vartanianshant characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT posseltandrew characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas AT royshuvo characterizationofhumanisletfunctioninaconvectiondrivenintravascularbioartificialpancreas |