Cargando…

Data-driven electrolyte design for lithium metal anodes

Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electroly...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sang Cheol, Oyakhire, Solomon T., Athanitis, Constantine, Wang, Jingyang, Zhang, Zewen, Zhang, Wenbo, Boyle, David T., Kim, Mun Sek, Yu, Zhiao, Gao, Xin, Sogade, Tomi, Wu, Esther, Qin, Jian, Bao, Zhenan, Bent, Stacey F., Cui, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013853/
https://www.ncbi.nlm.nih.gov/pubmed/36848560
http://dx.doi.org/10.1073/pnas.2214357120
_version_ 1784906867099566080
author Kim, Sang Cheol
Oyakhire, Solomon T.
Athanitis, Constantine
Wang, Jingyang
Zhang, Zewen
Zhang, Wenbo
Boyle, David T.
Kim, Mun Sek
Yu, Zhiao
Gao, Xin
Sogade, Tomi
Wu, Esther
Qin, Jian
Bao, Zhenan
Bent, Stacey F.
Cui, Yi
author_facet Kim, Sang Cheol
Oyakhire, Solomon T.
Athanitis, Constantine
Wang, Jingyang
Zhang, Zewen
Zhang, Wenbo
Boyle, David T.
Kim, Mun Sek
Yu, Zhiao
Gao, Xin
Sogade, Tomi
Wu, Esther
Qin, Jian
Bao, Zhenan
Bent, Stacey F.
Cui, Yi
author_sort Kim, Sang Cheol
collection PubMed
description Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electrolytes challenging. Here, we develop machine learning (ML) models that assist and accelerate the design of high-performance electrolytes. Using the elemental composition of electrolytes as the features of our models, we apply linear regression, random forest, and bagging models to identify the critical features for predicting CE. Our models reveal that a reduction in the solvent oxygen content is critical for superior CE. We use the ML models to design electrolyte formulations with fluorine-free solvents that achieve a high CE of 99.70%. This work highlights the promise of data-driven approaches that can accelerate the design of high-performance electrolytes for lithium metal batteries.
format Online
Article
Text
id pubmed-10013853
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-100138532023-08-27 Data-driven electrolyte design for lithium metal anodes Kim, Sang Cheol Oyakhire, Solomon T. Athanitis, Constantine Wang, Jingyang Zhang, Zewen Zhang, Wenbo Boyle, David T. Kim, Mun Sek Yu, Zhiao Gao, Xin Sogade, Tomi Wu, Esther Qin, Jian Bao, Zhenan Bent, Stacey F. Cui, Yi Proc Natl Acad Sci U S A Physical Sciences Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electrolytes challenging. Here, we develop machine learning (ML) models that assist and accelerate the design of high-performance electrolytes. Using the elemental composition of electrolytes as the features of our models, we apply linear regression, random forest, and bagging models to identify the critical features for predicting CE. Our models reveal that a reduction in the solvent oxygen content is critical for superior CE. We use the ML models to design electrolyte formulations with fluorine-free solvents that achieve a high CE of 99.70%. This work highlights the promise of data-driven approaches that can accelerate the design of high-performance electrolytes for lithium metal batteries. National Academy of Sciences 2023-02-27 2023-03-07 /pmc/articles/PMC10013853/ /pubmed/36848560 http://dx.doi.org/10.1073/pnas.2214357120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Kim, Sang Cheol
Oyakhire, Solomon T.
Athanitis, Constantine
Wang, Jingyang
Zhang, Zewen
Zhang, Wenbo
Boyle, David T.
Kim, Mun Sek
Yu, Zhiao
Gao, Xin
Sogade, Tomi
Wu, Esther
Qin, Jian
Bao, Zhenan
Bent, Stacey F.
Cui, Yi
Data-driven electrolyte design for lithium metal anodes
title Data-driven electrolyte design for lithium metal anodes
title_full Data-driven electrolyte design for lithium metal anodes
title_fullStr Data-driven electrolyte design for lithium metal anodes
title_full_unstemmed Data-driven electrolyte design for lithium metal anodes
title_short Data-driven electrolyte design for lithium metal anodes
title_sort data-driven electrolyte design for lithium metal anodes
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013853/
https://www.ncbi.nlm.nih.gov/pubmed/36848560
http://dx.doi.org/10.1073/pnas.2214357120
work_keys_str_mv AT kimsangcheol datadrivenelectrolytedesignforlithiummetalanodes
AT oyakhiresolomont datadrivenelectrolytedesignforlithiummetalanodes
AT athanitisconstantine datadrivenelectrolytedesignforlithiummetalanodes
AT wangjingyang datadrivenelectrolytedesignforlithiummetalanodes
AT zhangzewen datadrivenelectrolytedesignforlithiummetalanodes
AT zhangwenbo datadrivenelectrolytedesignforlithiummetalanodes
AT boyledavidt datadrivenelectrolytedesignforlithiummetalanodes
AT kimmunsek datadrivenelectrolytedesignforlithiummetalanodes
AT yuzhiao datadrivenelectrolytedesignforlithiummetalanodes
AT gaoxin datadrivenelectrolytedesignforlithiummetalanodes
AT sogadetomi datadrivenelectrolytedesignforlithiummetalanodes
AT wuesther datadrivenelectrolytedesignforlithiummetalanodes
AT qinjian datadrivenelectrolytedesignforlithiummetalanodes
AT baozhenan datadrivenelectrolytedesignforlithiummetalanodes
AT bentstaceyf datadrivenelectrolytedesignforlithiummetalanodes
AT cuiyi datadrivenelectrolytedesignforlithiummetalanodes