Cargando…
Data-driven electrolyte design for lithium metal anodes
Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electroly...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013853/ https://www.ncbi.nlm.nih.gov/pubmed/36848560 http://dx.doi.org/10.1073/pnas.2214357120 |
_version_ | 1784906867099566080 |
---|---|
author | Kim, Sang Cheol Oyakhire, Solomon T. Athanitis, Constantine Wang, Jingyang Zhang, Zewen Zhang, Wenbo Boyle, David T. Kim, Mun Sek Yu, Zhiao Gao, Xin Sogade, Tomi Wu, Esther Qin, Jian Bao, Zhenan Bent, Stacey F. Cui, Yi |
author_facet | Kim, Sang Cheol Oyakhire, Solomon T. Athanitis, Constantine Wang, Jingyang Zhang, Zewen Zhang, Wenbo Boyle, David T. Kim, Mun Sek Yu, Zhiao Gao, Xin Sogade, Tomi Wu, Esther Qin, Jian Bao, Zhenan Bent, Stacey F. Cui, Yi |
author_sort | Kim, Sang Cheol |
collection | PubMed |
description | Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electrolytes challenging. Here, we develop machine learning (ML) models that assist and accelerate the design of high-performance electrolytes. Using the elemental composition of electrolytes as the features of our models, we apply linear regression, random forest, and bagging models to identify the critical features for predicting CE. Our models reveal that a reduction in the solvent oxygen content is critical for superior CE. We use the ML models to design electrolyte formulations with fluorine-free solvents that achieve a high CE of 99.70%. This work highlights the promise of data-driven approaches that can accelerate the design of high-performance electrolytes for lithium metal batteries. |
format | Online Article Text |
id | pubmed-10013853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-100138532023-08-27 Data-driven electrolyte design for lithium metal anodes Kim, Sang Cheol Oyakhire, Solomon T. Athanitis, Constantine Wang, Jingyang Zhang, Zewen Zhang, Wenbo Boyle, David T. Kim, Mun Sek Yu, Zhiao Gao, Xin Sogade, Tomi Wu, Esther Qin, Jian Bao, Zhenan Bent, Stacey F. Cui, Yi Proc Natl Acad Sci U S A Physical Sciences Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electrolytes challenging. Here, we develop machine learning (ML) models that assist and accelerate the design of high-performance electrolytes. Using the elemental composition of electrolytes as the features of our models, we apply linear regression, random forest, and bagging models to identify the critical features for predicting CE. Our models reveal that a reduction in the solvent oxygen content is critical for superior CE. We use the ML models to design electrolyte formulations with fluorine-free solvents that achieve a high CE of 99.70%. This work highlights the promise of data-driven approaches that can accelerate the design of high-performance electrolytes for lithium metal batteries. National Academy of Sciences 2023-02-27 2023-03-07 /pmc/articles/PMC10013853/ /pubmed/36848560 http://dx.doi.org/10.1073/pnas.2214357120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Kim, Sang Cheol Oyakhire, Solomon T. Athanitis, Constantine Wang, Jingyang Zhang, Zewen Zhang, Wenbo Boyle, David T. Kim, Mun Sek Yu, Zhiao Gao, Xin Sogade, Tomi Wu, Esther Qin, Jian Bao, Zhenan Bent, Stacey F. Cui, Yi Data-driven electrolyte design for lithium metal anodes |
title | Data-driven electrolyte design for lithium metal anodes |
title_full | Data-driven electrolyte design for lithium metal anodes |
title_fullStr | Data-driven electrolyte design for lithium metal anodes |
title_full_unstemmed | Data-driven electrolyte design for lithium metal anodes |
title_short | Data-driven electrolyte design for lithium metal anodes |
title_sort | data-driven electrolyte design for lithium metal anodes |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013853/ https://www.ncbi.nlm.nih.gov/pubmed/36848560 http://dx.doi.org/10.1073/pnas.2214357120 |
work_keys_str_mv | AT kimsangcheol datadrivenelectrolytedesignforlithiummetalanodes AT oyakhiresolomont datadrivenelectrolytedesignforlithiummetalanodes AT athanitisconstantine datadrivenelectrolytedesignforlithiummetalanodes AT wangjingyang datadrivenelectrolytedesignforlithiummetalanodes AT zhangzewen datadrivenelectrolytedesignforlithiummetalanodes AT zhangwenbo datadrivenelectrolytedesignforlithiummetalanodes AT boyledavidt datadrivenelectrolytedesignforlithiummetalanodes AT kimmunsek datadrivenelectrolytedesignforlithiummetalanodes AT yuzhiao datadrivenelectrolytedesignforlithiummetalanodes AT gaoxin datadrivenelectrolytedesignforlithiummetalanodes AT sogadetomi datadrivenelectrolytedesignforlithiummetalanodes AT wuesther datadrivenelectrolytedesignforlithiummetalanodes AT qinjian datadrivenelectrolytedesignforlithiummetalanodes AT baozhenan datadrivenelectrolytedesignforlithiummetalanodes AT bentstaceyf datadrivenelectrolytedesignforlithiummetalanodes AT cuiyi datadrivenelectrolytedesignforlithiummetalanodes |