Cargando…

Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts

Over the last few decades, symbiosis and the concept of holobiont—a host entity with a population of symbionts—have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each...

Descripción completa

Detalles Bibliográficos
Autores principales: Chevrier, Daniel M., Juhin, Amélie, Menguy, Nicolas, Bolzoni, Romain, Soto-Rodriguez, Paul E. D., Kojadinovic-Sirinelli, Mila, Paterson, Greig A., Belkhou, Rachid, Williams, Wyn, Skouri-Panet, Fériel, Kosta, Artemis, Le Guenno, Hugo, Pereiro, Eva, Faivre, Damien, Benzerara, Karim, Monteil, Caroline L., Lefevre, Christopher T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013862/
https://www.ncbi.nlm.nih.gov/pubmed/36848579
http://dx.doi.org/10.1073/pnas.2216975120
_version_ 1784906869381267456
author Chevrier, Daniel M.
Juhin, Amélie
Menguy, Nicolas
Bolzoni, Romain
Soto-Rodriguez, Paul E. D.
Kojadinovic-Sirinelli, Mila
Paterson, Greig A.
Belkhou, Rachid
Williams, Wyn
Skouri-Panet, Fériel
Kosta, Artemis
Le Guenno, Hugo
Pereiro, Eva
Faivre, Damien
Benzerara, Karim
Monteil, Caroline L.
Lefevre, Christopher T.
author_facet Chevrier, Daniel M.
Juhin, Amélie
Menguy, Nicolas
Bolzoni, Romain
Soto-Rodriguez, Paul E. D.
Kojadinovic-Sirinelli, Mila
Paterson, Greig A.
Belkhou, Rachid
Williams, Wyn
Skouri-Panet, Fériel
Kosta, Artemis
Le Guenno, Hugo
Pereiro, Eva
Faivre, Damien
Benzerara, Karim
Monteil, Caroline L.
Lefevre, Christopher T.
author_sort Chevrier, Daniel M.
collection PubMed
description Over the last few decades, symbiosis and the concept of holobiont—a host entity with a population of symbionts—have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each individual symbiont and their assembly may generate collective behaviors at the holobiont scale remains a fundamental challenge. This is particularly intriguing in the case of the newly discovered magnetotactic holobionts (MHB) whose motility relies on a collective magnetotaxis (i.e., a magnetic field-assisted motility guided by a chemoaerotaxis system). This complex behavior raises many questions regarding how magnetic properties of symbionts determine holobiont magnetism and motility. Here, a suite of light-, electron- and X-ray-based microscopy techniques [including X-ray magnetic circular dichroism (XMCD)] reveals that symbionts optimize the motility, the ultrastructure, and the magnetic properties of MHBs from the microscale to the nanoscale. In the case of these magnetic symbionts, the magnetic moment transferred to the host cell is in excess (10(2) to 10(3) times stronger than free-living magnetotactic bacteria), well above the threshold for the host cell to gain a magnetotactic advantage. The surface organization of symbionts is explicitly presented herein, depicting bacterial membrane structures that ensure longitudinal alignment of cells. Magnetic dipole and nanocrystalline orientations of magnetosomes were also shown to be consistently oriented in the longitudinal direction, maximizing the magnetic moment of each symbiont. With an excessive magnetic moment given to the host cell, the benefit provided by magnetosome biomineralization beyond magnetotaxis can be questioned.
format Online
Article
Text
id pubmed-10013862
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-100138622023-08-27 Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts Chevrier, Daniel M. Juhin, Amélie Menguy, Nicolas Bolzoni, Romain Soto-Rodriguez, Paul E. D. Kojadinovic-Sirinelli, Mila Paterson, Greig A. Belkhou, Rachid Williams, Wyn Skouri-Panet, Fériel Kosta, Artemis Le Guenno, Hugo Pereiro, Eva Faivre, Damien Benzerara, Karim Monteil, Caroline L. Lefevre, Christopher T. Proc Natl Acad Sci U S A Biological Sciences Over the last few decades, symbiosis and the concept of holobiont—a host entity with a population of symbionts—have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each individual symbiont and their assembly may generate collective behaviors at the holobiont scale remains a fundamental challenge. This is particularly intriguing in the case of the newly discovered magnetotactic holobionts (MHB) whose motility relies on a collective magnetotaxis (i.e., a magnetic field-assisted motility guided by a chemoaerotaxis system). This complex behavior raises many questions regarding how magnetic properties of symbionts determine holobiont magnetism and motility. Here, a suite of light-, electron- and X-ray-based microscopy techniques [including X-ray magnetic circular dichroism (XMCD)] reveals that symbionts optimize the motility, the ultrastructure, and the magnetic properties of MHBs from the microscale to the nanoscale. In the case of these magnetic symbionts, the magnetic moment transferred to the host cell is in excess (10(2) to 10(3) times stronger than free-living magnetotactic bacteria), well above the threshold for the host cell to gain a magnetotactic advantage. The surface organization of symbionts is explicitly presented herein, depicting bacterial membrane structures that ensure longitudinal alignment of cells. Magnetic dipole and nanocrystalline orientations of magnetosomes were also shown to be consistently oriented in the longitudinal direction, maximizing the magnetic moment of each symbiont. With an excessive magnetic moment given to the host cell, the benefit provided by magnetosome biomineralization beyond magnetotaxis can be questioned. National Academy of Sciences 2023-02-27 2023-03-07 /pmc/articles/PMC10013862/ /pubmed/36848579 http://dx.doi.org/10.1073/pnas.2216975120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Chevrier, Daniel M.
Juhin, Amélie
Menguy, Nicolas
Bolzoni, Romain
Soto-Rodriguez, Paul E. D.
Kojadinovic-Sirinelli, Mila
Paterson, Greig A.
Belkhou, Rachid
Williams, Wyn
Skouri-Panet, Fériel
Kosta, Artemis
Le Guenno, Hugo
Pereiro, Eva
Faivre, Damien
Benzerara, Karim
Monteil, Caroline L.
Lefevre, Christopher T.
Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts
title Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts
title_full Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts
title_fullStr Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts
title_full_unstemmed Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts
title_short Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts
title_sort collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013862/
https://www.ncbi.nlm.nih.gov/pubmed/36848579
http://dx.doi.org/10.1073/pnas.2216975120
work_keys_str_mv AT chevrierdanielm collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT juhinamelie collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT menguynicolas collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT bolzoniromain collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT sotorodriguezpauled collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT kojadinovicsirinellimila collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT patersongreiga collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT belkhourachid collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT williamswyn collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT skouripanetferiel collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT kostaartemis collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT leguennohugo collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT pereiroeva collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT faivredamien collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT benzerarakarim collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT monteilcarolinel collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts
AT lefevrechristophert collectivemagnetotaxisofmicrobialholobiontsisoptimizedbythethreedimensionalorganizationandmagneticpropertiesofectosymbionts