Cargando…
Andrographolide exerts anti-respiratory syncytial virus activity by up-regulating heme oxygenase-1 independent of interferon responses in human airway epithelial cells
BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of mortality and morbidity in children under the age of five. Despite this, there is still a lack of safe and effective vaccines and antiviral agents for clinical use. Andrographolide exerts antiviral functions against a variety of v...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013987/ https://www.ncbi.nlm.nih.gov/pubmed/36918433 http://dx.doi.org/10.1007/s11033-023-08346-z |
Sumario: | BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of mortality and morbidity in children under the age of five. Despite this, there is still a lack of safe and effective vaccines and antiviral agents for clinical use. Andrographolide exerts antiviral functions against a variety of viruses, but whether (and how) it exerts antiviral effects on RSV remains unclear. METHODS AND RESULTS: In vitro RSV infection models using A549 and 16HBE cell lines were established, and the effects of andrographolide on RSV were analyzed via RSV N gene load and proinflammatory cytokine levels. The RNA transcriptome was sequenced, and data were analyzed by R software. Andrographolide-related target genes were extracted via network pharmacology using online databases. Lentiviral transfection was applied to knockdown the heme oxygenase-1 gene (Hmox1, HO-1). Results showed that andrographolide suppressed RSV replication and attenuated subsequent inflammation. Network pharmacology and RNA sequencing analysis indicated that the hub gene HO-1 may play a pivotal role in the anti-RSV effects of andrographolide. Furthermore, andrographolide exerted antiviral effects against RSV partially by inducing HO-1 but did not activate the antiviral interferon response. CONCLUSION: Our findings demonstrated that andrographolide exerted anti-RSV activity by up-regulating HO-1 expression in human airway epithelial cells, providing novel insights into potential therapeutic targets and drug repurposing in RSV infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11033-023-08346-z. |
---|