Cargando…

Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry azole susceptibility assessment in Candida and Aspergillus species

BACKGROUND: Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) allows rapid pathogen identification and potentially can be used for antifungal susceptibility testing (AFST). OBJECTIVES: We evaluated the performance of the MALDI-TOF MS in assessing azole susce...

Descripción completa

Detalles Bibliográficos
Autores principales: Giordano, Ana Luisa Perini Leme, Pontes, Lais, Beraquet, Caio Augusto Gualtieri, Lyra, Luzia, Schreiber, Angelica Zaninelli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Instituto Oswaldo Cruz, Ministério da Saúde 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014031/
https://www.ncbi.nlm.nih.gov/pubmed/36921145
http://dx.doi.org/10.1590/0074-02760220213
Descripción
Sumario:BACKGROUND: Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) allows rapid pathogen identification and potentially can be used for antifungal susceptibility testing (AFST). OBJECTIVES: We evaluated the performance of the MALDI-TOF MS in assessing azole susceptibility, with reduced incubation time, by comparing the results with the reference method Broth Microdilution. METHODS: Resistant and susceptible strains of Candida (n = 15) were evaluated against fluconazole and Aspergillus (n = 15) against itraconazole and voriconazole. Strains were exposed to serial dilutions of the antifungals for 15 h. Microorganisms’ protein spectra against all drug concentrations were acquired and used to generate a composite correlation index (CCI) matrix. The comparison of autocorrelations and cross-correlations between spectra facilitated by CCI was used as a similarity parameter between them, enabling the inference of a minimum profile change concentration breakpoint. Results obtained with the different AFST methods were then compared. FINDINGS: The overall agreement between methods was 91.11%. Full agreement (100%) was reached for Aspergillus against voriconazole and Candida against fluconazole, and 73.33% of agreement was obtained for Aspergillus against itraconazole. MAIN CONCLUSIONS: This study demonstrates MALDI-TOF MS’ potential as a reliable and faster alternative for AFST. More studies are necessary for method optimisation and standardisation for clinical routine application.