Cargando…
Machine learning approaches to predict drug efficacy and toxicity in oncology
In recent years, there has been a surge of interest in using machine learning algorithms (MLAs) in oncology, particularly for biomedical applications such as drug discovery, drug repurposing, diagnostics, clinical trial design, and pharmaceutical production. MLAs have the potential to provide valuab...
Autores principales: | Badwan, Bara A., Liaropoulos, Gerry, Kyrodimos, Efthymios, Skaltsas, Dimitrios, Tsirigos, Aristotelis, Gorgoulis, Vassilis G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014302/ https://www.ncbi.nlm.nih.gov/pubmed/36936080 http://dx.doi.org/10.1016/j.crmeth.2023.100413 |
Ejemplares similares
-
Interplay of Developmental Hippo–Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer
por: Mourkioti, Ioanna, et al.
Publicado: (2022) -
Microphysiological Systems (“Organs‐on‐Chips”) for Drug Efficacy and Toxicity Testing
por: Low, LA, et al.
Publicado: (2017) -
Applications of machine learning in computer-aided drug discovery
por: Turzo, SM Bargeen Alam, et al.
Publicado: (2022) -
Artificial Intelligence, Machine Learning, and Big Data for Ebola Virus Drug Discovery
por: Kwofie, Samuel K., et al.
Publicado: (2023) -
Lights and Shadows in Immuno-Oncology Drug Development
por: Bergamino Sirvén, Milana, et al.
Publicado: (2021)