Cargando…
Are deep models in radiomics performing better than generic models? A systematic review
BACKGROUND: Application of radiomics proceeds by extracting and analysing imaging features based on generic morphological, textural, and statistical features defined by formulas. Recently, deep learning methods were applied. It is unclear whether deep models (DMs) can outperform generic models (GMs)...
Autor principal: | Demircioğlu, Aydin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014394/ https://www.ncbi.nlm.nih.gov/pubmed/36918479 http://dx.doi.org/10.1186/s41747-023-00325-0 |
Ejemplares similares
-
Predictive performance of radiomic models based on features extracted from pretrained deep networks
por: Demircioğlu, Aydin
Publicado: (2022) -
Evaluation of the dependence of radiomic features on the machine learning model
por: Demircioğlu, Aydin
Publicado: (2022) -
The effect of preprocessing filters on predictive performance in radiomics
por: Demircioğlu, Aydin
Publicado: (2022) -
Systematic Review of the Psychometric Performance of Generic Childhood Multi-attribute Utility Instruments
por: Kwon, Joseph, et al.
Publicado: (2023) -
MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome—A Systematic Review
por: Dragoș, Hanna Maria, et al.
Publicado: (2023)