Cargando…
iEnhancer-DCSV: Predicting enhancers and their strength based on DenseNet and improved convolutional block attention module
Enhancers play a crucial role in controlling gene transcription and expression. Therefore, bioinformatics puts many emphases on predicting enhancers and their strength. It is vital to create quick and accurate calculating techniques because conventional biomedical tests take too long time and are to...
Autores principales: | Jia, Jianhua, Lei, Rufeng, Qin, Lulu, Wu, Genqiang, Wei, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014624/ https://www.ncbi.nlm.nih.gov/pubmed/36936423 http://dx.doi.org/10.3389/fgene.2023.1132018 |
Ejemplares similares
-
iEnhancer-EBLSTM: Identifying Enhancers and Strengths by Ensembles of Bidirectional Long Short-Term Memory
por: Niu, Kun, et al.
Publicado: (2021) -
iEnhancer-DCSA: identifying enhancers via dual-scale convolution and spatial attention
por: Wang, Wenjun, et al.
Publicado: (2023) -
EMDL-ac4C: identifying N4-acetylcytidine based on ensemble two-branch residual connection DenseNet and attention
por: Jia, Jianhua, et al.
Publicado: (2023) -
iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks
por: Nguyen, Quang H., et al.
Publicado: (2019) -
Classification of asymmetry in mammography via the DenseNet convolutional neural network
por: Liao, Tingting, et al.
Publicado: (2023)