Cargando…

Assessment of organophosphate pesticide residues in environmental media of Araromi farm settlement, Osun State, Nigeria

The aim of the study was to assess the occurrence and distribution of organophosphate compounds residue in soil, surface water, sediment, and banana crops in Araromi farm settlement, Osun State, Nigeria. Organophosphate pesticide residues were determined using a gas chromatography equipped with Flam...

Descripción completa

Detalles Bibliográficos
Autores principales: Awe, Yemisi Tosin, Sangodoyin, Abimbola Yisau, Ogundiran, Mary Bosede
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Environmental Health and Toxicology & Korea Society for Environmental Analysis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014740/
https://www.ncbi.nlm.nih.gov/pubmed/36916048
http://dx.doi.org/10.5620/eaht.2022035
Descripción
Sumario:The aim of the study was to assess the occurrence and distribution of organophosphate compounds residue in soil, surface water, sediment, and banana crops in Araromi farm settlement, Osun State, Nigeria. Organophosphate pesticide residues were determined using a gas chromatography equipped with Flame-Ionization Detection (GC-FID) in 16 soil samples from cocoa and banana farms, 6 water and sediment samples each, and 8 banana samples from 4 farms in the study site. Fourteen organophosphate compounds were detected (acephate, omethoate, dementon-s-methyl, dimethoate, tolcofos-methyl, pirimiphos-methyl, malathion, chlorpyrifos, methidathion, prothiofos, profenofos, ethion, azinphos-methyl and pyrazophos). Tolclofos-methyl, pirimiphos-methyl and prothiofos were detected in all the soil and sediment samples with concentration ranges of 1.9–12.9, 2.25–6.98 and 3.38–9.89 mg/kg respectively in soil and 8.13–9.83, 2.82–25.1 and 3.70–19.5 mg/kg respectively in sediment. Dimethoate, pirimiphos-methyl and prothiofos with concentration ranges, 0.06–0.28, 0.09–0.18 and 0.16–6.11 mg/L respectively were mostly detected in water samples while dimethoate, tolcofos-methyl, malathion, methidathion, prothiofos, ethion and azinphos-methyl compounds were detected in all the banana samples with concentration ranges, 3.40–12.0, 1.82–6.26, 5.73–9.48, 29.7–145, 8.24–20.1, 3.87–9.35 and 3.66–12.2 mg/kg respectively. The organophosphate mean residue concentrations were mostly significantly higher than the Maximum Residue Limits (MRL) at p<0.05. Across the three samples, only pirimiphos-methyl was significantly higher in water samples, omethoate in sediment; acephate, dementon-s-methyl and chlorpyrifos in banana were also not significantly higher at p<0.05. A strong positive significant correlation was observed between the organophosphate compounds in the banana and water samples (R=0.77, p=0.002) at p<0.05. The occurrence of organophosphate compounds in concentrations above MRLs may pose serious environmental and health risks.