Cargando…
The implementation of NILS: A web-based artificial neural network decision support tool for noninvasive lymph node staging in breast cancer
OBJECTIVE: To implement artificial neural network (ANN) algorithms for noninvasive lymph node staging (NILS) to a decision support tool and facilitate the option to omit surgical axillary staging in breast cancer patients with low-risk of nodal metastasis. METHODS: The NILS tool is a further develop...
Autores principales: | Dihge, Looket, Bendahl, Pär-Ola, Skarping, Ida, Hjärtström, Malin, Ohlsson, Mattias, Rydén, Lisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014909/ https://www.ncbi.nlm.nih.gov/pubmed/36937408 http://dx.doi.org/10.3389/fonc.2023.1102254 |
Ejemplares similares
-
Noninvasive Staging of Lymph Node Status in Breast Cancer Using Machine Learning: External Validation and Further Model Development
por: Hjärtström, Malin, et al.
Publicado: (2023) -
The NILS Study Protocol: A Retrospective Validation Study of an Artificial Neural Network Based Preoperative Decision-Making Tool for Noninvasive Lymph Node Staging in Women with Primary Breast Cancer (ISRCTN14341750)
por: Skarping, Ida, et al.
Publicado: (2022) -
The implementation of a noninvasive lymph node staging (NILS) preoperative prediction model is cost effective in primary breast cancer
por: Skarping, Ida, et al.
Publicado: (2022) -
Artificial neural network models to predict nodal status in clinically node-negative breast cancer
por: Dihge, Looket, et al.
Publicado: (2019) -
The accuracy of preoperative axillary nodal staging in primary breast cancer by ultrasound is modified by nodal metastatic load and tumor biology
por: Dihge, Looket, et al.
Publicado: (2016)