Cargando…

Novel coil design and analysis for high-power wireless power transfer with enhanced Q-factor

The power transfer efficiency (PTE) is a crucial aspect for effective wireless power transfer (WPT) applications. The quality factor (Q) of the WPT coil plays a critical role in ensuring higher PTE. In this paper, a novel method of improving the Q of a WPT coil is proposed. Resistance reduction tech...

Descripción completa

Detalles Bibliográficos
Autores principales: Awuah, Charles Marfo, Danuor, Patrick, Moon, Jung-Ick, Jung, Young-Bae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014958/
https://www.ncbi.nlm.nih.gov/pubmed/36918669
http://dx.doi.org/10.1038/s41598-023-31389-y
Descripción
Sumario:The power transfer efficiency (PTE) is a crucial aspect for effective wireless power transfer (WPT) applications. The quality factor (Q) of the WPT coil plays a critical role in ensuring higher PTE. In this paper, a novel method of improving the Q of a WPT coil is proposed. Resistance reduction techniques are presented which involves variation of the trace pitch, width, and thickness. This approach targets the high AC losses centered in the inner turns, which subsequently results in an increased Q. Numerical analysis with respect to the inductance and resistance models are presented, analyzed, and compared to that of the EM simulation results. To verify the efficacy of the proposed coil structure, a prototype is fabricated where good agreement is achieved between the measured and simulated results. The proposed coil attained a quality factor increment of about 19.24% at 85 kHz in comparison to the conventional one. The proposed technique can be used to optimize planar spiral coils to attain higher Q.