Cargando…
AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning
Closed-loop, autonomous experimentation enables accelerated and material-efficient exploration of large reaction spaces without the need for user intervention. However, autonomous exploration of advanced materials with complex, multi-step processes and data sparse environments remains a challenge. I...
Autores principales: | Volk, Amanda A., Epps, Robert W., Yonemoto, Daniel T., Masters, Benjamin S., Castellano, Felix N., Reyes, Kristofer G., Abolhasani, Milad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015005/ https://www.ncbi.nlm.nih.gov/pubmed/36918561 http://dx.doi.org/10.1038/s41467-023-37139-y |
Ejemplares similares
-
Accelerated AI development for autonomous materials synthesis in flow
por: Epps, Robert W., et al.
Publicado: (2021) -
Fluidic memristor: Bringing chemistry to neuromorphic devices
por: Xiong, Tianyi, et al.
Publicado: (2023) -
Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications
por: Muniswamy, Venkatesha, et al.
Publicado: (2018) -
Virtual Chemistry Lab to Virtual Reality Chemistry Lab
por: Sreekanth, N. S., et al.
Publicado: (2022) -
Fluidics
por: Tarumoto, David H, et al.
Publicado: (1968)