Cargando…
Development and validation of deep learning based embryo selection across multiple days of transfer
This work describes the development and validation of a fully automated deep learning model, iDAScore v2.0, for the evaluation of human embryos incubated for 2, 3, and 5 or more days. We trained and evaluated the model on an extensive and diverse dataset including 181,428 embryos from 22 IVF clinics...
Autores principales: | Theilgaard Lassen, Jacob, Fly Kragh, Mikkel, Rimestad, Jens, Nygård Johansen, Martin, Berntsen, Jørgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015019/ https://www.ncbi.nlm.nih.gov/pubmed/36918648 http://dx.doi.org/10.1038/s41598-023-31136-3 |
Ejemplares similares
-
Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences
por: Berntsen, Jørgen, et al.
Publicado: (2022) -
Embryo selection with artificial intelligence: how to evaluate and compare methods?
por: Kragh, Mikkel Fly, et al.
Publicado: (2021) -
Comparing performance between clinics of an embryo evaluation algorithm based on time-lapse images and machine learning
por: Johansen, Martin N., et al.
Publicado: (2023) -
Day-3 vs. Day-5 fresh embryo
transfer
por: Garbhini, Putu Githa, et al.
Publicado: (2023) -
Correlation between an annotation-free embryo scoring system based on deep learning and live birth/neonatal outcomes after single vitrified-warmed blastocyst transfer: a single-centre, large-cohort retrospective study
por: Ueno, Satoshi, et al.
Publicado: (2022)