Cargando…

The platelet pannexin 1-IL-1β axis orchestrates pancreatic ductal adenocarcinoma invasion and metastasis

We aimed to investigate the protumor mechanisms of platelets in pancreatic ductal adenocarcinoma (PDAC). Serum samples were collected from 656 PDAC patients and 3105 healthy people, and a Panx1 knockout tumor model and an adoptive platelet transfusion mouse model were established. We showed that the...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hao, Jiang, Wang, Zhang, Shi-Rong, Li, Peng-Cheng, Li, Tian-Jiao, Jin, Wei, Xu, Hua-Xiang, Yu, Xian-Jun, Liu, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015141/
https://www.ncbi.nlm.nih.gov/pubmed/36922676
http://dx.doi.org/10.1038/s41388-023-02647-0
Descripción
Sumario:We aimed to investigate the protumor mechanisms of platelets in pancreatic ductal adenocarcinoma (PDAC). Serum samples were collected from 656 PDAC patients and 3105 healthy people, and a Panx1 knockout tumor model and an adoptive platelet transfusion mouse model were established. We showed that the blood platelet counts were not significantly different between stage III/IV and stage I/II patients, while the number of the CD41+/CD62P+ platelets was significantly elevated in stage III/IV patients, indicating that CD41+/CD62P+ platelets are associated with a poor prognosis. Further analysis showed that a high level of CD41+/CD62P+ platelets was significantly correlated with microvascular invasion (P = 0.002), advanced 8th edition AJCC stage (P < 0.001), and a high CA19-9 level (P = 0.027) and independently predicted a poor prognosis for resectable I/II PDAC. Furthermore, we found significantly higher Panx1 expression in CD41+/CD62P+ platelets than in CD41+/CD62P- platelets in PDAC patients. Mechanistically, Panx1 was able to enhance IL-1β secretion in CD41+/CD62P+ platelets by phosphorylating p38 MAPK and consequently promoted the invasion and metastasis of PDAC cells. Finally, we synthesized a novel compound named PC63435 by the ligation of carbenoxolone (a Panx1 inhibitor) and PSGL-1 (a CD62P ligand). PC63435 specifically bound to CD41+/CD62P+ platelets, then blocked the Panx1/IL-1β pathway and reduced the proportion of CD41+/CD62P+ platelets, which suppressed PDAC tumor invasion and metastasis in vivo. These results demonstrated that the Panx1/IL-1β axis in CD41+/CD62P+ platelets enhanced PDAC cell malignancy and that this axis may be a promising target for PDAC therapy.