Cargando…
A machine learning model for prediction of 30-day primary graft failure after heart transplantation
BACKGROUND: Primary graft failure (PGF) remains the most common cause of short-term mortality after heart transplantation. The main objective was to develop and validate a risk model for prediction of short-term mortality due to PGF after heart transplantation using the ISHLT Heart Transplant Regist...
Autores principales: | Linse, Björn, Ohlsson, Mattias, Stehlik, Joseph, Lund, Lars H., Andersson, Bodil, Nilsson, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015245/ https://www.ncbi.nlm.nih.gov/pubmed/36938431 http://dx.doi.org/10.1016/j.heliyon.2023.e14282 |
Ejemplares similares
-
The International Heart Transplant Survival Algorithm (IHTSA): A New Model to Improve Organ Sharing and Survival
por: Nilsson, Johan, et al.
Publicado: (2015) -
CODUSA - Customize Optimal Donor Using Simulated Annealing In Heart Transplantation
por: Ansari, Daniel, et al.
Publicado: (2013) -
Improving prediction of heart transplantation outcome using deep learning techniques
por: Medved, Dennis, et al.
Publicado: (2018) -
Analysis of the Influence of HLA-A Matching Relative to HLA-B and -DR Matching on Heart Transplant Outcomes
por: Ansari, David, et al.
Publicado: (2015) -
Human Leukocyte Antigen‐Based Risk Stratification in Heart Transplant Recipients—Implications for Targeted Surveillance
por: Nilsson, Johan, et al.
Publicado: (2019)