Cargando…
Pathologist Validation of a Machine Learning–Derived Feature for Colon Cancer Risk Stratification
IMPORTANCE: Identifying new prognostic features in colon cancer has the potential to refine histopathologic review and inform patient care. Although prognostic artificial intelligence systems have recently demonstrated significant risk stratification for several cancer types, studies have not yet sh...
Autores principales: | L’Imperio, Vincenzo, Wulczyn, Ellery, Plass, Markus, Müller, Heimo, Tamini, Nicolò, Gianotti, Luca, Zucchini, Nicola, Reihs, Robert, Corrado, Greg S., Webster, Dale R., Peng, Lily H., Chen, Po-Hsuan Cameron, Lavitrano, Marialuisa, Liu, Yun, Steiner, David F., Zatloukal, Kurt, Pagni, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015309/ https://www.ncbi.nlm.nih.gov/pubmed/36917112 http://dx.doi.org/10.1001/jamanetworkopen.2022.54891 |
Ejemplares similares
-
Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learning
por: Krogue, Justin D., et al.
Publicado: (2023) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Analysis of biomedical data with multilevel glyphs
por: Müller, Heimo, et al.
Publicado: (2014) -
Automatic classification of histopathological diagnoses for building a large scale tissue catalogue
por: Reihs, Robert, et al.
Publicado: (2016)