Cargando…
German Medical Named Entity Recognition Model and Data Set Creation Using Machine Translation and Word Alignment: Algorithm Development and Validation
BACKGROUND: Data mining in the field of medical data analysis often needs to rely solely on the processing of unstructured data to retrieve relevant data. For German natural language processing, few open medical neural named entity recognition (NER) models have been published before this work. A maj...
Autores principales: | Frei, Johann, Kramer, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015355/ https://www.ncbi.nlm.nih.gov/pubmed/36853741 http://dx.doi.org/10.2196/39077 |
Ejemplares similares
-
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021) -
Impact of translation on named-entity recognition in radiology texts
por: Campos, Luís, et al.
Publicado: (2017) -
Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
por: Munkhdalai, Tsendsuren, et al.
Publicado: (2015)